岩性油气藏 ›› 2018, Vol. 30 ›› Issue (1): 165–172.doi: 10.3969/j.issn.1673-8926.2018.01.017

• 石油工程 • 上一篇    

致密砂岩薄层压裂工艺技术研究及应用

刘建坤1,2, 蒋廷学1,2, 万有余3, 吴春方1,2, 刘世华1,2   

  1. 1. 页岩油气富集机理与有效开发国家重点实验室, 北京 100101;
    2. 中国石化石油工程技术研究院, 北京 100101;
    3. 中国石油青海油田分公司 钻采工艺研究院, 甘肃 敦煌 736202
  • 收稿日期:2017-09-26 修回日期:2017-11-28 出版日期:2018-01-21 发布日期:2018-01-21
  • 第一作者:刘建坤(1984-),男,工程师,主要从事储层改造工艺技术及理论方面的研究工作。地址:(100101)北京市朝阳区北辰东路8号北辰时代大厦6层。Email:jiankliu@163.com。
  • 基金资助:
    国家重大科技专项“复杂地层储层改造关键技术”(编号:2011ZX05031-004-003)和中国石化科技攻关项目“鄂南致密油藏两级裂缝高导流复合压裂技术研究”(编号:P17005-5)联合资助

Fracturing technology for thin layer in tight sandstone reservoir and its application

LIU Jiankun1,2, JIANG Tingxue1,2, WAN Youyu3, WU Chunfang1,2, LIU Shihua1,2   

  1. 1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China;
    2. Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China;
    3. Research Institute of Drilling & Production Technology, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China
  • Received:2017-09-26 Revised:2017-11-28 Online:2018-01-21 Published:2018-01-21

摘要: 针对致密砂岩薄层压裂面临缝高难控、改造体积小、裂缝支撑效率低及导流能力保持较差等难题,从压裂工程角度出发,通过压裂工艺参数优化模拟研究了不同黏度压裂液在不同的压裂施工参数下对裂缝延伸参数的影响规律,分析了薄层体积压裂存在的问题及难点,得出了主控因素,并在此基础上提出了薄层压裂控缝高措施及提高裂缝支撑效率工艺方法。研究表明:压裂液黏度是影响裂缝扩展、延伸的主要因素,其次是排量、液量;薄层压裂应以控缝高为前提,充分利用天然裂缝的作用,提高改造体积及裂缝支撑效率;低黏度压裂液能兼顾薄层压裂控缝高及造缝长的作用,有利于开启及扩展天然裂缝,进一步降低储层伤害,适宜作为薄层体积压裂的前置液;施工不同泵注阶段采用多黏度组合的压裂液体系,既可以扩大有效造缝体积及形成多尺度的裂缝系统,又能兼顾前置液阶段控缝高及携砂液阶段加砂的要求;采取变密度支撑剂结合多尺度组合加砂方式可实现不同粒径支撑剂与不同尺度裂缝系统的匹配,提高多尺度裂缝系统及远井地带裂缝的支撑效率。研究成果在龙凤山薄层气藏及江陵凹陷薄层油藏的多口井进行了试验,压裂后增产及稳产效果显著高于常规改造工艺,且稳产有效期明显增长,提高了该类储层压裂的有效性。

关键词: 细粒沉积岩, 储层, 芦草沟组, 非常规油气, 准噶尔盆地南缘

Abstract: In order to solve the fracturing problems in the thin layer of tight sandstone reservoir,such as difficulty of controlling fracture height,low stimulated reservoir volume, low proppant supporting efficiency,the maintaining of flow conductivity etc.,the difficulties of fracturing in such reservoir were analyzed by the means of simulating how different kinds of fracturing fluid under different fracturing construction parameters affect the fracturing parameters,and the main controlling factors were obtained. On this basis,a fracturing technological method for controlling fracture height and improving fracture supporting efficiency was formed. The result shows that the main factors affecting the expansion and extension of the fracture are the viscosity of fracturing fluid,followed by the construction displacement and the liquid quantity. The thin layer fracturing should be based on the controlling of fracture height,make full use of the natural fracture,and improve the construction volume and the supporting efficiency. Low viscosity fracturing fluid is suitable for thin layer volume fracturing for it can take into account the role of controlling fracture height and making long fracture length in thin layer fracturing,which is beneficial for opening and expanding natural fractures,and further reducing reservoir damage. The combination of multi-viscosity fracturing fluid system at different stages of pump construction can not only expand the effective fracture volume and form multi-scale fracture system,but also take into account the requirement for controlling fracture height in the front fluid stage and carrying proppant in the carrying stage. Variable density proppant combined with multi-scale proppant adding method can match different size proppant with different scale fracture system, and improve the supporting efficiency of multi-scale fracture system and fractures in far well zone. The research result was successfully used in many wells in Longfengshan thin layer gas reservoir and Jiangling thin layer oil reservoir. According to the testing result,the production was far better than that of conventional fracturing method and the stable production period was improved effectively. This method improved the effectiveness of thin layer fracturing.

Key words: fine-grained clastic rock, reservoir, Lucaogou Formation, unconventional resource, Junggar Basin

中图分类号: 

  • TE357.1
[1] 周祥,张士诚,马新仿,等.薄差层水力压裂控缝高技术研究. 陕西科技大学学报,2015,33(4):94-99. ZHOU X,ZHANG S C,MA X F,et al. Research on fracture height containment in thin and poor pay zones. Journal of Shaanxi University of Science & Technology,2015,33(4):94-99.
[2] 杨兆中,苏洲,李小刚,等.水平井交替压裂裂缝间距优化及影响因素分析. 岩性油气藏,2015,27(3):11-17 YANG Z Z,SU Z,LI X G,et al. Fracture spacing optimization for horizontal well alternating fracturing and influencing factors. Lithologic Reservoirs,2015,27(3):11-17.
[3] 熊健,曾山,王绍平. 低渗透油藏变导流垂直裂缝井产能模型.岩性油气藏,2013,25(6):122-126. XIONG J,ZENG S,WANG S P. A productivity model of vertically fractured well with varying conductivity for low permeability reservoirs. Lithologic Reservoirs,2013,25(6):122-126.
[4] 宋毅,伊向艺,卢渊.地应力对垂直裂缝高度的影响及缝高控制技术研究.石油地质与工程,2008,22(1):75-77. SONG Y,YI X Y,LU Y. Impact of earth stress on vertical fracture height and technique of fracture height control. Petroleum Geology and Engineering,2008,22(1):75-77.
[5] 李勇明,李崇喜,郭建春.砂岩气藏压裂裂缝高度影响因素分析.石油天然气学报(江汉石油学院学报),2007,29(2):87-90. LI Y M,LI C X,GUO J C. Analysis on the influence factors of fracture height of sandstone gas reservoir fracturing. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute),2007,29(2):87-90.
[6] 金智荣,张华丽,周继东,等. 薄互层大型压裂组合加砂技术研究与应用.石油钻探技术,2013,41(6):86-89. JIN Z R,ZHANG H L,ZHOU J D,et al. Research and application of massive combined sand fracturing for thin interbedded reservoirs. Petroleum Drilling Techniques,2013,41(6):86-89.
[7] 尹建,郭建春,曾凡辉.低渗透薄互层压裂技术研究及应用. 天然气与石油,2012,30(6):52-54. YIN J,GUO J C,ZENG F H. Research and application of low permeability and thin interbed fracturing technology. Natural Gas and Oi1,2012,30(6):52-54.
[8] 刘钦节,闫相祯,杨秀娟.分层地应力方法在薄互层低渗油藏大型压裂设计中的应用.石油钻采工艺,2009,31(4):83-88. LIU Q J,YAN X Z,YANG X J. Application of stratified stress method in massive hydraulic fracturing design. Oil Drilling & Production Technology,2009,31(4):83-88.
[9] 牟善波,刘晓宇.高89块低孔、特低渗薄互层大型压裂技术研究与应用.断块油气田,2006,13(2):74-76. MOU S B,LIU X Y. Study and application of big-frac treatment technology on the thin oil sandwiches of low porosity and extra-low permeability in Block Gao 89. Fault-Block Oil & Gas Fie1d,2006,13(2):74-76.
[10] 刘曦翔,张哨楠,杨鹏,等. 龙凤山地区营城组深层优质储层形成机理. 岩性油气藏,2017,29(2):117-124. LIU X X,ZHANG S N,YANG P,et al. Formation mechanism of deep high-quality reservoirs of Yingcheng Formation in Longfengshan area,Songliao Basin. Lithologic Reservoirs, 2017,29(2):117-124.
[11] 黄禹忠. 降低压裂井底地层破裂压力的措施. 断块油气田, 2005,12(1):74-76. HUANG Y Z. Measure on reducing formation fracturing pressure of well bottom. Fault-Block Oil & Gas Field,2005,12(1):74-76.
[12] 邓燕,薛仁江,郭建春.低渗透储层酸预处理降低破裂压力机理.西南石油大学学报(自然科学版),2011,33(3):125-129. DENG Y,XUE R J,GUO J C. The mechanism of high-pressure high temperature and low permeability acid pretreatment to reduce fracturing pressure. Journal of Southwest Petroleum University(Science & Technology Edition),2011,33(3):125-129.
[13] 曾凡辉,刘林,郭建春,等.酸处理降低储层破裂压力机理及现场应用.油气地质与采收率,2010,17(1):108-110. ZENG F H,LIU L,GUO J C,et al. The mechanism and field application of reducing formation fracture pressure by acid treatment. Petroleum Geology and Recovery Efficiency,2010, 17(1):108-110.
[14] 郭建春,辛军,赵金洲,等.酸处理降低地层破裂压力的计算分析.西南石油大学学报(自然科学版),2008,30(2):83-86. GUO J C,XIN J,ZHAO J Z,et al. The calculation analysis of decreasing formation fracturing pressure by acidizing pretreatment. Journal of Southwest Petroleum University(Natural Science Edition),2008,30(2):83-86.
[15] 刘平礼,兰夕堂,李年银,等.酸预处理在水力压裂中降低伤害机理研究.西南石油大学学报(自然科学版),2016,38(3):150-155. LIU P L,LAN X T,LI N Y,et al. A study on damage reduction mechanism of acid preflushing during hydraulic fracturing. Journal of Southwest Petroleum University(Natural Science Edition),2016,38(3):150-155.
[16] 蒋廷学.页岩油气水平井压裂裂缝复杂性指数研究及应用展望.石油钻探技术,2013,41(2):7-12. JIANG T X. The fracture complexity index of horizontal wells in shale oil and gas reservoirs. Petroleum Drilling Techniques, 2013,41(2):7-12.
[17] 张杰,张超谟,张占松,等.基于应力-应变曲线形态的致密气储层脆性研究.岩性油气藏,2017,29(3):126-131. ZHANG J,ZHANG C M,ZHANG Z S,et al. Brittleness of tight gas reservoirs based on stress-strain curves. Lithologic Reservoirs,2017,29(3):126-131.
[18] KLINGENSMITH B C,HOSSAINI M,FLEENOR S. Considering far-field fracture connectivity in stimulation treatment designs in the Permian Basin. SPE 178554,2015.
[19] SAHAI R,MISKIMINS J L,OLSON K E,et al. Laboratory results of proppant transport in complex fracture systems. SPE 168579,2014.
[1] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[2] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[3] 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148.
[4] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[5] 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188.
[6] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[7] 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86.
[8] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[9] 何文渊, 陈可洋. 哈萨克斯坦南图尔盖盆地Doshan斜坡带岩性油气藏储层预测方法[J]. 岩性油气藏, 2024, 36(4): 1-11.
[10] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[11] 田亚, 李军辉, 陈方举, 李跃, 刘华晔, 邹越, 张晓扬. 海拉尔盆地中部断陷带下白垩统南屯组致密储层特征及有利区预测[J]. 岩性油气藏, 2024, 36(4): 136-146.
[12] 卢科良, 吴康军, 李志军, 孙永河, 徐少华, 梁锋, 刘露, 李爽. 川中古隆起北斜坡寒武系龙王庙组油气成藏特征及演化模式[J]. 岩性油气藏, 2024, 36(4): 159-168.
[13] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[14] 秦正山, 何勇明, 丁洋洋, 李柏宏, 孙双双. 边水气藏水侵动态分析方法及水侵主控因素[J]. 岩性油气藏, 2024, 36(4): 178-188.
[15] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .