岩性油气藏 ›› 2018, Vol. 30 ›› Issue (4): 120–126.doi: 10.12108/yxyqc.20180414

• 油气田开发 • 上一篇    下一篇

海上稠油油田高含水期开发模式研究

张运来, 廖新武, 胡勇, 李廷礼, 苏进昌   

  1. 中海石油 (中国) 有限公司天津分公司, 天津 300459
  • 收稿日期:2017-12-03 修回日期:2018-02-27 出版日期:2018-07-21 发布日期:2018-07-21
  • 第一作者:张运来(1982-),男,硕士,工程师,主要从事海上油气田开发调整及提高采收率方面的研究工作。地址:(300459)天津市滨海新区海川路2121号海油大厦B座。Email:zhangyl8@cnooc.com.cn。
  • 基金资助:
    “十二五”国家重大科技专项“海上稠油油田高效开发示范工程(二期)”(编号:2011ZX05057)资助

Development models for offshore heavy oil field in high water cut stage

ZHANG Yunlai, LIAO Xinwu, HU Yong, LI Tingli, SU Jinchang   

  1. Tianjin Branch of CNOOC Ltd., Tianjin 300459, China
  • Received:2017-12-03 Revised:2018-02-27 Online:2018-07-21 Published:2018-07-21

摘要: 海上稠油油田进入高含水开发期后,面临采油速度低、水窜快、产量递减快及采收率低等问题,且缺乏分层系开发调整经验,制约了油田的稳产和高效开发。以秦皇岛32-6油田为例,利用室内物理实验、油藏数值模拟等方法,开展了高含水期开发模式研究,明确了海上非均质稠油油藏分层系开发技术界限、注采井间加密模式和底水油藏水平井布井下限。结果表明:当储层原油黏度级差大于3或渗透率级差大于3时,层间干扰系数增大,实施分层系开采,且各开发层系油层厚度为4~8 m;对于强非均质性储层,不同井型、井网加密模式下体积波及系数差别较大,采用反九点转五点水平井+定向井联合井网加密模式,并将井距调整为220 m,体积波及系数显著提高;储层内部隔夹层渗透率、分布面积和分布位置均对水平井产能具有较大影响,基于隔夹层优化布井后,原油黏度为260 mPa·s的底水稠油油藏水平井累计产油量达到5万m3,油柱高度可由12 m下推至7 m。基于上述研究成果形成了“纵向分层系、平面变井网、水平井挖潜”的海上河流相稠油油田高效开发新模式,应用于秦皇岛32-6油田获得了良好的开发效果,可为类似油田的开发提供借鉴。

关键词: 油藏数值模拟, 初始化, 毛管压力, J函数

Abstract: After entering high water cut development stage,the offshore heavy oil field is faced with the problems of low oil recovery speed,rapid water channeling,rapid production decline and low recovery ratio,and lack of experience in stratified development and adjustment,which restricts the stable production and efficient development of the oil field. Taking Qinhuangdao 32-6 oilfield as an example,the development model in high water cut stage was studied by using laboratory physical experiments and reservoir numerical simulation,and the technical limits of stratified development of offshore heterogeneous heavy oil reservoirs,injection-production infill model and downhole limit of horizontal well layout in bottom water reservoir were defined. The results show that when the reservoir viscosity level difference is less than 3 or the permeability difference is greater than 3,the interlayer interference coefficient increases,the stratified development should be carried out,and the thickness of each development layer is 4-8 m. For strong heterogeneous reservoirs,the volumetric sweep efficiency varies greatly under different well types and pattern infill models. By adjusting the well spacing to 220 m,the volumetric sweep efficiency is improved significantly. The permeability,distribution area and distribution position of reservoir interlayer have great influence on the productivity of horizontal well. After the interlayer optimization,the accumulative oil production of the horizontal well in the heavy oil bottom water reservoir with the viscosity of 260 mPa·s is 50 000 m3, and the height of the oil column can be pushed from 12 m to 7 m. Based on the above research results, a new high efficiency development model of"vertical layering system", "plane change well pattern"and"horizontal well tapping potential" in offshore fluvial facies oil fields was formed. It was applied to Qinhuangdao 32-6 oilfield, and good results have been achieved, which can provide reference for the development of similar oilfields.

Key words: reservoir numerical simulation, initialization, capillary pressure, J function

中图分类号: 

  • TE345
[1] 俞启泰, 李文兴, 刘渭, 等.论注水砂岩油田高含水期的调整原则.石油学报, 1991, 12(3):58-68. YU Q T, LI W X, LIU W, et al. A discussion on the principle of development adjustment in a water-flooding sandstone reservoir during its high water-cut stage. Acta Petrolei Sinica, 1991, 12(3):58-68.
[2] 王秋语.国外高含水砂岩油田提高水驱采收率技术进展.岩性油气藏, 2012, 24(3):123-128. WANG Q Y. Technical progress for improving waterflood recovery efficiency of foreign high water cut sandstone oilfield. Lithologic Reservoirs, 2012, 24(3):123-128.
[3] 王家宏. 多油层油藏分层注水稳产条件与井网加密调整.石油学报, 2009, 30(1):80-83. WANG J H. Stable production conditions and well pattern infilling for development of multilayered reservoir with separate zone water injection. Acta Petrolei Sinica, 2009, 30(1):80-83.
[4] 徐赢, 潘有军, 周荣萍, 等.油田注水开发期含水率随时间变化规律研究.岩性油气藏, 2016, 28(4):127-132. XU Y, PAN Y J, ZHOU R P, et al. Water cut change law with time in waterflooding oilfield. Lithologic Reservoirs, 2016, 28(4):127-132.
[5] 周守为.海上稠油高效开发新模式研究及应用.西南石油大学学报(自然科学版), 2007, 29(5):1-4. ZHOU S W. The research and application of new models efficient development of offshore heavy oilfield. Journal of Southwest Petroleum University(Science & Technology Edition), 2007, 29(5):1-4.
[6] 周守为, 张凤久, 孙福街, 等.中国近海典型油田开发实践.北京:石油工业出版社, 2009:28-29. ZHOU S W, ZHANG F J, SUN F J, et al. The typical development practice of Chinese offshore oilfield. Beijing:Petroleum Industry Press, 2009:28-29.
[7] 郭太现, 杨庆红, 黄凯, 等.海上河流相油田高效开发技术.石油勘探与开发, 2013, 40(6):708-714. GUO T X, YANG Q H, HUANG K, et al. Techniques for highefficient development of offshore fluvial oilfields. Petroleum Exploration and Development, 2013, 40(6):708-714.
[8] 张凤久, 罗宪波, 刘英宪, 等.海上油田丛式井网整体加密调整技术研究.中国工程科学, 2011, 13(5):34-40. ZHANG F J, LUO X B, LIU Y X, et al. Research on overall encryption adjustment technology of offshore oil field. Engineering Sciences, 2011, 13(5):34-40.
[9] 鲜波, 熊钰, 石国新, 等.薄层油藏合采层间干扰分析及技术对策研究.特种油气藏, 2007, 14(3):51-54. XIAN B, XIONG Y, SHI G X, et al. Interlayer interfer-ence analysis of commingled production in thin reservoirsand its technical countermeasures. Special Oil and Gas Reservoir, 2007, 14(3):51-54.
[10] 于春生, 李闽, 乔国安, 等.纵向非均质油藏水驱油实验研究. 西南石油大学学报(自然科学版), 2009, 31(1):84-86. YU C S, LI M, QIAO G A, et al. Vertically he-terogeneous reservoir water flooding oil test. Journal of Southwest Petroleum University(Science & Technology Edition), 2009, 31(1):84-86.
[11] 于会利, 汪卫国, 荣娜, 等.胜坨油田不同含水期层间干扰规律.油气地质与采收率, 2006, 13(4):71-73. YU H L, WANG W G, RONG N, et al. Rule of interlayer interference in various water cut periods of Shengtuo oil-field. Petroleum Geology and Recovery Efficiency, 2006, 13(4):71-73.
[12] 熊钰, 卢智慧, 李玉林, 等.高含水期油田油井合采技术界限研究.特种油气藏, 2010, 17(1):61-63. XIONG Y, LU Z H, LI Y L, et al. Research on technical limits of multilayer producer for oilfield in high water cut stage. Special Oil and Gas Reservoir, 2010, 17(1):61-63.
[13] 闫正和, 郭康良, 李彦平, 等.海上干扰试井数值模拟设计及方案优化.岩性油气藏, 2015, 27(2):98-102. YAN Z H, GUO K L, LI Y P, et al. Interference well test with numerical simulation design and program optimization at sea. Lithologic Reservoirs, 2015, 27(2):98-102.
[14] 冯敏, 吴向红, 李捷, 等.苏丹大型复杂砂岩油田水平井技术研究与应用.特种油气藏, 2012, 19(2):97-100. FENG M, WU X H, LI J, et al. Research and application of horizontal well technology for large complex sandstone oilfields in Sudan. Special Oil & Gas Reservoirs, 2012, 19(2):97-100.
[15] 欧阳雨薇, 胡勇, 张运来, 等. 低幅底水稠油油藏水平井含水率上升规律.新疆石油地质, 2017, 38(5):607-610. OUYANG Y W, HU Y, ZHANG Y L, et al. Water cut rising law of low-amplitude heavy oil reservoirs with bottom water in horizontal wells. Xinjiang Petroleum Geology, 2017, 38(5):607-610.
[16] 李廷礼, 廖新武, 徐玉霞, 等.海上低幅底水稠油油藏特征及水平井开发初探.特种油气藏, 2012, 19(6):95-97. LI T L, LIAO X W, XU Y X, et al. Initial study on characteristics and development with horizontal wells of heavy oil reservoirs with small bottom water in offshore. Special Oil & Gas Reservoirs, 2012, 19(6):95-97.
[17] 甘立琴, 苏进昌, 谢岳, 等.曲流河储层隔夹层研究——以秦皇岛32-6油田为例.岩性油气藏, 2017, 29(6):128-134. GAN L Q, SU J C, XIE Y, et al. Interlayers of meandering river reservoir:a case from Qinhuangdao 32-6 oilfield. Lithologic Reservoirs, 2017, 29(6):128-134.
[18] 胡浩. 基于砂体结构的剩余油挖潜调整措施研究.岩性油气藏, 2016, 28(5):111-120. HU H. Adjustment measures of remaining oil tapping based on sand body structure. Lithologic Reservoirs, 2016, 28(5):111-120.
[19] 高淑梅, 范绍雷, 梅启亮, 等.水平井开发技术在底水油藏挖潜中的应用.大庆石油地质与开发, 2009, 28(4):56-59. GAO S M, FAN S L, MEI Q L, et al. Application of horizontal well development technology in tapping potential of bottomwater reservoirs. Petroleum Geology and oilfield Development in Daqing, 2009, 28(4):56-59.
[1] 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188.
[2] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
[3] 李传亮, 朱苏阳, 刘东华. 盖层封堵油气的机理研究[J]. 岩性油气藏, 2019, 31(1): 12-19.
[4] 岳世俊, 郑长龙, 杨兆平, 景紫岩, 刘雄志, 金保中. 枚举平衡法在油藏数值模拟初始化中的应用[J]. 岩性油气藏, 2017, 29(6): 142-147.
[5] 刘航宇, 田中元, 徐振永. 基于分形特征的碳酸盐岩储层孔隙结构定量评价[J]. 岩性油气藏, 2017, 29(5): 97-105.
[6] 张建兴, 林承焰, 张宪国, 孙志峰, 陈家昀. 基于储层构型与油藏数值模拟的点坝储层剩余油分布研究[J]. 岩性油气藏, 2017, 29(4): 146-153.
[7] 李传亮, 朱苏阳, 彭朝阳, 王凤兰, 杜庆龙, 由春梅. 煤层气井突然产气机理分析[J]. 岩性油气藏, 2017, 29(2): 145-149.
[8] 李传亮,朱苏阳,聂 旷,邓鹏,刘东华. 恒速压汞不能确定孔喉比[J]. 岩性油气藏, 2016, 28(6): 134-139.
[9] 李传亮,朱苏阳. 水驱油效率可达到 100%[J]. 岩性油气藏, 2016, 28(1): 1-5.
[10] 司马立强,李 清,杨 毅,陈 强 . 用 J 函数法求取碳酸盐岩储层饱和度方法探讨[J]. 岩性油气藏, 2014, 26(6): 106-110.
[11] 刘义坤,王永平,唐慧敏,王凤娇,陈凌云. 毛管压力曲线和分形理论在储层分类中的应用[J]. 岩性油气藏, 2014, 26(3): 89-92.
[12] 张宪国,张涛,林承焰. 基于孔隙分形特征的低渗透储层孔隙结构评价[J]. 岩性油气藏, 2013, 25(6): 40-45.
[13] 朱苏阳,李传亮. 对顶水油藏概念的质疑[J]. 岩性油气藏, 2013, 25(1): 21-23.
[14] 郑艳荣,屈红军,冯杨伟,王云,王力,李敏. 安塞油田H 区长6 油层组储层微观孔隙结构特征[J]. 岩性油气藏, 2011, 23(5): 28-32.
[15] 李传亮,李冬梅. 渗吸的动力不是毛管压力[J]. 岩性油气藏, 2011, 23(2): 114-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .