岩性油气藏 ›› 2021, Vol. 33 ›› Issue (4): 93–100.doi: 10.12108/yxyqc.20210410

• 勘探技术 • 上一篇    下一篇

基于独立分量分析的地震信号盲源分离及应用

孟会杰, 苏勤, 曾华会, 徐兴荣, 刘桓, 张小美   

  1. 中国石油勘探开发研究院 西北分院, 兰州 730020
  • 收稿日期:2020-12-25 修回日期:2021-03-05 出版日期:2021-08-01 发布日期:2021-08-06
  • 第一作者:孟会杰(1991-),男,硕士,工程师,主要从事地震资料处理及地震资料处理方法研究方面的工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:menghj@petrochina.com.cn。
  • 基金资助:
    中国石油天然气集团公司勘探与生产分公司项目“利用地震面波特征估算近地表速度及Q值方法研究”(编号:2020-53007071-000004)资助

Blind source separation of seismic signals based on ICA algorithm and its application

MENG Huijie, SU Qin, ZENG Huahui, XU Xingrong, LIU Huan, ZHANG Xiaomei   

  1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2020-12-25 Revised:2021-03-05 Online:2021-08-01 Published:2021-08-06

摘要: 受采集条件及野外环境影响,实际地震资料通常包含严重的噪声,严重影响成像质量。因此,寻找合适的去噪方法来提高资料信噪比至关重要。随盲源信号分离理论发展而来的独立分量分析(ICA)算法以高阶统计理论分析为基础,根据地震有效信号和随机噪声统计独立的特征,可实现信噪分离,但该方法通常要求观测信号数大于源信号数。基于此,提出一种相空间重构与独立分量分析相结合的地震信号单通道盲源分离算法,对地震资料进行去噪处理。该方法利用相空间重构技术,将一维信号重构成多维信号,根据重构相空间中有效信号和随机噪声的几何特征差异,并利用ICA算法结合数据本身的高阶统计特性,可以有效分离噪声和有效信号,提高地震资料信噪比。

关键词: 相空间, 重构, 独立分量分析, 去噪, 盲源分离

Abstract: Affected by the acquisition conditions and field environment,the actual seismic data usually contains severe noise,which seriously affects the imaging quality. Therefore,it is significant to find a suitable denoising method to improve the S/N ratio of the data and thus improve the accuracy of imaging. Independent component analysis(ICA)algorithm developed with blind source separation theory is based on higher-order statistical theoretical analysis,which can achieve the purpose of separating the signal and noise by combining the independent statistics features of effective signal and noise. However,this method requires the number of the observation signals is more than source signals. Based on this,a blind sources separation algorithm of seismic signal was proposed to process the seismic data. By phase space reconstruction(PSR),the single-channel signal was reconstructed into a multi-dimensional phase space,and the dynamic characteristics of the reconstructed phase space is consistent with the original signal. Then,in the reconstructed phase space,based on the difference of the geometric characteristics and combining the high-order statistical characteristics of the data,the noise and effective signal can be effectively separated by ICA algorithm,and achieve the purpose of improving the signal-to-noise ratio of seismic data.

Key words: phase space, reconstruction, independent component analysis, denoising, blind sources separation

中图分类号: 

  • P631.4
[1] 王西文, 雍学善, 王宇超, 等.面对重点勘探领域的地震技术研究和应用实效.岩性油气藏, 2010, 22(3):83-90. WANG X W, YONG X S, WANG Y C, et al. Study and application of seismic technologies for key exploration fields. Lithologic Reservoirs, 2010, 22(3):83-90.
[2] ABMA R, CLAERBOUT J. Lateral prediction for noise attenua-tion by t-x and f-x techniques. Geophysics, 1995, 60(6):1887-1896.
[3] CHEN Y, MA J. Random noise attenuation by f-x empirical mode decomposition predictive filtering. Geophysics, 2013, 79(3):81-91.
[4] 吴红梅, 樊骥.基于K-L变换的微地震资料去噪方法.复杂油气藏, 2013, 6(3):33-36. WU H M, FAN J. A denoising method based on K-L transform for microseismic data. Complex Hydrocarbon Reservoirs,2013, 6(3):33-36.
[5] 张军华, 吕宁, 田连玉.地震资料去噪方法技术综合评述.地球物理学进展, 2006, 21(2):546-553. ZHANG J H, LYU N, TIAN L Y. An overview of the methods and techniques for seismic data noise attenuation. Progress in Geophysics, 2006, 21(2):546-553.
[6] CHEN Y K, MA J W, FOMEL S. Double-sparsity dictionary for seismic noise attenuation. Geophysics, 2016, 81(2):103-116.
[7] DENG L, YUAN S Y, WANG S X. Sparse Bayesian learning based on seismic denoise by using physical wavelet as basis functions. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1):1993-1997.
[8] 石战战, 夏艳晴, 周怀来.基于联合稀疏表示的共偏移距道集随机噪声压制方法.岩性油气藏, 2019, 31(5):92-100. SHI Z Z, XIA Y Q, ZHOU H L. Random noise attenuation based on joint sparse representation in common offset gathers. Lithologic Reservoirs, 2019, 31(5):92-100.
[9] 张猛刚, 洪忠, 窦玉坛.时频分析在苏里格地区含气性检测中的应用.岩性油气藏, 2013, 25(5):76-80. ZHANG M G, HONG Z, DOU Y T. Application of time-frequency analysis technology to the gas detection in Sulige area. Lithologic Reservoirs, 2013, 25(5):76-80.
[10] 王鹏, 常旭, 桂志先.基于S变换的低信噪比微震信息提取方法研究.岩性油气藏, 2015, 27(4):77-83. WANG P, CHANG X, GUI Z X. Microseismic information extraction in low signal-to-noise ratio microseismic signal based on S-transform. Lithologic Reservoirs, 2015, 27(4):77-83.
[11] 刘丽娟, 王山山.广义S变换窗函数的分析和改进.岩性油气藏, 2007, 19(2):76-79. LIU L J, WANG S S. Analysis and improvement of window function of generalized S-transform. Lithologic Reservoirs, 2007, 19(2):76-79.
[12] IBRAHI A, SACCHI M D. Simultaneous source separation using a robust Radon transform. Geophysics, 2013, 79(1):17-24.
[13] 杨会, 张华, 王冬年, 等.基于曲波变换与EMD的地震数据随机噪声衰减.工程地球物理学报, 2018, 15(1):79-85. YANG H, ZHANG H, WANG D N, ed al. Random noise attenuation of seismic data based on curvelet transform and emd. Chinese Journal of Engineering Geophysics, 2018, 15(1):79-85.
[14] HERAULT J, JUTTEN C. Space or time adaptive signal processing by neural network models. AIP Conference Proceedings 151, 1986:206-211.
[15] COMON P. Independent component analysis-a new concept. Signal Processing, 1994, 36(3):287-314.
[16] 刘喜武, 刘洪, 李幼铭.快速独立分量变换与去噪初探.中国科学院研究生院学报, 2003, 20(4):488-492. LIU X W, LIU H, LI Y M. Independent component transformation and its testing application on seismic noise elimination. Journal of the Graduate School of the Chinese Academy of Sciences, 2003, 20(4):488-492.
[17] 刘喜武, 刘洪, 李幼铭.独立分量分析及其在地震信息处理中应用初探.地球物理学进展, 2003, 18(1):90-96. LIU X W, LIU H, LI Y M. Independent component analysis and its testing application on seismic signal processing. Progress in Geophysics, 2003, 18(1):90-96.
[18] 吕文彪, 尹成, 张白林.利用独立分量分析法去除地震噪声. 石油地球物理勘探, 2007, 42(2):132-136. LYU W B, YIN C, ZHANG B L. Seismic data denoising by independent component analysis method. Oil Geophysical Prospecting, 2007, 42(2):132-136.
[19] 李大卫, 尹成, 谢兵.模拟退火独立分量分析方法及其应用. 石油物探, 2007, 46(1):24-27. LI D W, YIN C, XIE B. Simulated annealing independent component analysis method and its application. Geophysical Prospecting for Petroleum, 2007, 46(1):24-27.
[20] 张念, 刘天佑, 李杰. FastICA算法及其在地震信号去噪中的应用.计算机应用研究, 2009, 26(4):1432-1434. ZHANG N, LIU T Y, LI J. FastICA algorithm and its application in seismic signal noise elimination. Application Research of Computers, 2009, 26(4):1432-1434.
[21] 张银雪, 田雪民.步长自适应ICA在地震信号去噪中的应用. 计算机工程与应用, 2011, 47(31):215-219. ZHANG Y X, TIAN X M. Application of adaptive step size in dependent component analysis to seismic signal denoising. Computer Engineering and Applications, 2011, 47(31):215-219.
[22] 王维强, 杨国权. 基于EMD与ICA的地震信号去噪技术研究.石油物探, 2012, 51(1):19-30. WANG W Q, YANG G Q. Research of seismic signal denoising based on the combination of EMD and ICA algorithm. Geophysical Prospecting for Petroleum, 2012, 51(1):19-30.
[23] 袁星虎, 杨正华, 曹剑.FastICA在地震信号去噪中的应用研究.物探化探计算技术, 2017, 39(3):378-382. YUAN X H, YANG Z H, CAO J. The research and application of Fast ICA in seismic signal denoising. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(3):378-382.
[24] 逯宇佳, 曹俊兴, 田仁飞, 等.基于动态时间规整ICA算法地震随机噪声压制.石油物探, 2018, 57(5):697-704. LU Y J, CAO J X, TIAN R F, et al. Seismic random noise suppression based on independent component analysis improved by dynamic time warping. Geophysical Prospecting for Petroleum, 2018, 57(5):697-704.
[25] TAKENS F. Detecting strange attractors in turbulence. Springer Lecture Notes Math, 1981, 898:366-381.
[26] 胡瑜, 陈涛.基于C-C算法的混沌吸引子的相空间重构技术. 电子测量与仪器学报, 2012, 26(5):425-430. HU Y, CHEN T. Phase-space reconstruction technology of chaotic attractor based on C-C method. Journal of electronic measurement and instrument. 2012, 26(5):425-430.
[27] KIM H S, EYKHOLT R, SALAS J D. Nonlinear dynamics, delay time and embedding windows. Physica D, 1999, 12:748-760.
[28] 李宏, 林义刚, 张冬升. ICA在地震信号处理中的应用研究. 科学技术与工程.2010, 10(9):2058-2066. LI H, LIN Y G, ZHANG D S. Research of using ICA on the application of seismic signal processing. Science Technology and Engineering, 2010, 10(9):2058-2066.
[1] 何文渊, 陈可洋. 哈萨克斯坦南图尔盖盆地Doshan斜坡带岩性油气藏储层预测方法[J]. 岩性油气藏, 2024, 36(4): 1-11.
[2] 张昌民, 张祥辉, 王庆, 冯文杰, 李少华, 易雪斐, Adrian J. HARTLEY. 分支河流体系沉积学工作框架与流程[J]. 岩性油气藏, 2024, 36(1): 1-13.
[3] 石文武, 雍运动, 吴开龙, 田彦灿, 王鹏. 渤海湾盆地老爷庙地区火山岩速度建模与成像[J]. 岩性油气藏, 2021, 33(4): 101-110.
[4] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[5] 刁瑞, 吴国忱, 崔庆辉, 尚新民, 芮拥军. 地面阵列式微地震监测关键技术研究[J]. 岩性油气藏, 2017, 29(1): 104-109.
[6] 石小茜. 自然伽马反演模型重构方法研究[J]. 岩性油气藏, 2016, 28(4): 95-100.
[7] 王俊瑞,梁力文,邓 强,田盼盼,谭伟雄. 基于多元回归模型重构测井曲线的方法研究及应用[J]. 岩性油气藏, 2016, 28(3): 113-120.
[8] 潘光超,周家雄,韩光明,朱沛苑,刘 峰. 中深层“甜点”储层地震预测方法探讨—— 以珠江口盆地西部文昌 A 凹陷为例[J]. 岩性油气藏, 2016, 28(1): 94-100.
[9] 张永峰, 王 鹏, 张亚兵, 胥小萍, 苏 勤, 徐兴荣. 基于变差函数的高精度静校正融合技术及其应用[J]. 岩性油气藏, 2015, 27(3): 108-114.
[10] 陈 胜,欧阳永林,曾庆才,包世海,李新豫,杨 青. 匹配追踪子波分解重构技术在气层检测中的应用[J]. 岩性油气藏, 2014, 26(6): 111-114.
[11] 皮雄,节丽. 火山熔岩地震识别与预测方法研究及应用[J]. 岩性油气藏, 2013, 25(5): 89-93.
[12] 赵 岩,贺振华,黄德济. 边缘保真去噪在地震相干体计算中的应用[J]. 岩性油气藏, 2010, 22(2): 95-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .