岩性油气藏 ›› 2022, Vol. 34 ›› Issue (6): 152–159.doi: 10.12108/yxyqc.20220613

• 石油工程与油气田开发 • 上一篇    下一篇

超稠油注气次生泡沫油生成机理及渗流特征

卢迎波   

  1. 中国石油新疆油田分公司 风城油田作业区, 新疆 克拉玛依 834000
  • 收稿日期:2022-02-28 修回日期:2022-05-23 出版日期:2022-11-01 发布日期:2022-11-09
  • 第一作者:卢迎波(1988-),男,硕士,工程师,主要从事稠油与超稠油开发方面的工作。地址:(834000)新疆克拉玛依市克拉玛依区胜利路62号。Email:fcluyb@petrochina.com.cn。
  • 基金资助:
    国家科技重大专项“大型油气田及煤层气开发”(编号: 2016ZX05012)和中国石油股份有限公司重大专项“新疆油田浅层稠油稳产提效技术研究与应用”(编号: 2017E-0408)、“未动用稠油开采新技术研究”(编号: 2019B-1411)、“稠油提高采收率关键技术研究”(编号: 2021DJ1403)联合资助

Formation mechanism and percolation characteristics of secondary foamy oil by gas injection in super heavy oil

LU Yingbo   

  1. Fengcheng Oilfield District, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China
  • Received:2022-02-28 Revised:2022-05-23 Online:2022-11-01 Published:2022-11-09

摘要: 为探索泡沫油在超稠油油藏中的形成机理、渗流特征及驱油效果,采用准噶尔盆地西北缘乌夏断裂带侏罗系齐古组原油及油藏参数,进行注气形成泡沫油介质筛选及原油泡点压力测定实验,并开展注气微观可视化和填砂管驱油实验,深入解析注气形成泡沫油过程中的渗流特征,评价了注气泡沫油驱油效果。研究结果表明:①准噶尔盆地西北缘乌夏断裂带侏罗系齐古组原油泡点压力为9.7 MPa,拟泡点压力随着注气量的增加而增加,随温度的上升而上升,50℃的拟泡点压力随着CO2注入量的增加而增大,压力上升速度较缓,储层具有较好的注气特性。②研究区的泡沫油渗流可分为5个阶段:无气泡阶段、气泡析出阶段、气泡扩张阶段、气泡聚并阶段和气泡消亡阶段。③研究区蒸汽+CO2方式驱油开采过程较纯蒸汽填砂管驱的采收率可提升13.3%,开采过程中随着压力的释放,气泡数目逐渐增多,产油量逐步缓慢上升;当压力降至泡点压力后,气泡数目趋于平稳,形成较稳定的泡沫油,产油量大幅提升,为主力产油期;当压力释放至拟泡点压力后,气泡数目迅速下降,泡沫油逐渐消亡,产油量缓慢下降。

关键词: 超稠油, 泡沫油, 泡点压力, 驱油机理, 渗流特征, 齐古组, 侏罗系, 乌夏断裂带, 准噶尔盆地西北缘

Abstract: In order to explore the formation mechanism, percolation characteristics and displacement effect of foamy oil in super heavy oil reservoir, the oil and reservoir parameters of Jurassic Qigu Formation in Wuxia fault zone in the northwestern margin of Junggar Basin were used to select gas injection medium for foamy oil formation and carry out the testing experiment of bubble point pressure of crude oil. The gas injection microscopic visualization and sand-filling pipe displacement experiments were carried out to analyze the percolation characteristics of foamy oil formed by gas injection, and the oil displacement effect of gas injection foamy oil was evaluated. The results show that: (1)The bubble point pressure of the crude oil of Jurassic Qigu Formation in Wuxia fault zone in the northwestern margin of Junggar Basin is 9.7 MPa. The pseudo-bubble point pressure increases with the increase of gas injection volume and temperature, the pseudo-bubble point pressure at 50 °C increases with the increase of CO2 injection,and the pressure rises slowly. The reservoir has good gas injection characteristics. (2)The flow of foamy oil in the study area can be divided into five stages:no bubble stage, bubble precipitation stage, bubble expansion stage,bubble coalescence stage and bubble extinction stage.(3)The recovery of steam+ CO2 flooding is 13.3% higher than that of pure steam sand-filled pipe flooding. With the release of pressure,the number of bubbles increases gradually, and the oil production increases gradually. When the pressure drops to the bubble point pressure,the number of bubbles tends to be stable and form relatively stable foamy oil,and the oil production increases greatly,which is the main oil production period. When the pressure is released to the pseudobubble point pressure,the number of bubbles will decrease rapidly,the foam oil will disappear gradually,and the oil production will decrease slowly.

Key words: super heavy oil, foamy oil, bubble point pressure, oil displacement mechanism, percolation characteristics, Qigu Formation, Jurassic, Wuxia fault zone, northwestern margin of Junggar Basin

中图分类号: 

  • TE121.3
[1] 赵瑞东, 吴晓东, 王瑞河, 等.稠油冷采泡沫油中气泡成核生长机理研究[J].特种油气藏, 2011, 18(3):78-80. ZHAO Ruidong, WU Xiaodong, WANG Ruihe, et al. Bubble nucleation and growth mechanism in heavy oil cold production[J]. Special Oil & Gas Reservoirs, 2011, 18(3):78-80.
[2] 熊钰, 王冲. 关于泡沫油黏度的若干问题[J]. 岩性油气藏, 2016, 28(4):1-8. XIONG Yu, WANG Chong. Several issues concerning foamy oil viscosity[J]. Lithologic Reservoirs, 2016, 28(4):1-8.
[3] 刘尚奇, 孙希梅, 李松林.委内瑞拉MPE-3区块超重油冷采过程中泡沫油开采机理[J].特种油气藏, 2011, 18(4):102-104. LIU Shangqi, SUN Ximei, LI Songlin. Foamy oil recovery mechanism in cold production process of super heavy oil in Venezuela MPE-3 block[J]. Special Oil & Gas Reservoirs, 2011, 18(4):102-104.
[4] 鹿腾, 李兆敏, 李松岩, 等.泡沫油流变特性及其影响因素实验[J].石油学报, 2013, 34(5):1004-1009. LU Teng, LI Zhaomin, LI Songyan, et al. An experimental study on rheological property and influential factors of foamy oils[J]. Acta Petrolei Sinica, 2013, 34(5):1004-1009.
[5] 熊钰, 王冲. 泡沫油模型研究现状[J]. 断块油气田, 2016, 23(4):476-483. XIONG Yu, WANG Chong. A review of foamy oil model[J]. Fault-Block Oil & Gas Field, 2016, 23(4):476-483.
[6] 熊钰, 王冲, 王玲, 等.泡沫油形成过程及其影响因素研究进展[J].世界科技研究与发展, 2016, 38(3):471-480. XIONG Yu, WANG Chong, WANG Ling, et al. Research development of foamy oil formation and its affecting factors[J]. World Sci-Tech R & D, 2016, 38(3):471-480.
[7] 刘雪琦. 超重泡沫油油藏再生泡沫油开发方式优化研究[D]. 北京:中国石油大学(北京), 2016. LIU Xueqi. Study on the optimization of development mode of regeneration foam oil in overweight reservoirs[D]. Beijing:China University of Petroleum(Beijing), 2016.
[8] 孙晓飞, 张艳玉, 段学苇, 等. 稠油注气二次泡沫油形成机理及数值模拟[J].石油与天然气地质, 2017, 38(2):391-399. SUN Xiaofei, ZHANG Yanyu, DUAN Xuewei, et al. A study on mechanisms and numerical simulation of secondary foamy oil by gas injection in heavy oil reservoirs[J]. Oil & Gas Geology, 2017, 38(2):391-399.
[9] 卢迎波, 胡鹏程, 申婷婷, 等.电加热辅助蒸汽吞吐提高水平井水平段动用程度的技术[J].大庆石油地质与开发, 2022, 41(2):167-174. LU Yingbo, HU Pengcheng, SHEN Tingting, et al. Enhancing technique of the horizontal-interval developed degree by electricalheating-assistant steam huff and puff for the horizontal well[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(2):167-174.
[10] 霍进, 吕柏林, 杨兆臣, 等. 稠油油藏多元介质复合蒸汽吞吐驱油机理研究[J].特种油气藏, 2020, 27(2):93-97. HUO Jin, LYU Bolin, YANG Zhaochen, et al. Displacement mechanism of multi-component compound steam stimulation in heavy-oil reservoir[J]. Special Oil & Gas Reservoirs, 2020, 27(2):93-97.
[11] 李宗浩, 刘海磊, 卞保力, 等.准噶尔盆地西北缘掩伏带构造特征及勘探潜力分析[J].特种油气藏, 2018, 25(5):56-60. LI Zonghao, LIU Hailei, BIAN Baoli, et al. Structure characterization and exploration potential analysis of the shielding belt in the northwestern rim of Junggar Basin[J]. Special Oil & Gas Reservoirs, 2018, 25(5):56-60.
[12] 冯有良, 胡素云, 李建忠, 等.准噶尔盆地西北缘同沉积构造坡折对层序建造和岩性油气藏富集带的控制[J]. 岩性油气藏, 2018, 30(4):14-25. FENG Youliang, HU Suyun, LI Jianzhong, et al. Controls of syndepositional structural slope-break zones on sequence architecture and enrichment zones of lithologic reservoirs in northwestern margin of Junggar Basin[J]. Lithologic Reservoirs, 2018, 30(4):14-25.
[13] 马永平, 王国栋, 张献文, 等.粗粒沉积次生孔隙发育模式:以准噶尔盆地西北缘二叠系夏子街组为例[J]. 岩性油气藏, 2019, 31(5):34-43. MA Yongping, WANG Guodong, ZHANG Xianwen, et al. Development model of secondary pores in coarse-grained deposits:A case study of Permian Xiazijie Formation in northwestern margin of Junggar Basin[J]. Lithologic Reservoirs, 2019, 31(5):34-43.
[14] 吴小军, 苏海斌, 张士杰, 等.砂砾质辫状河储层构型解剖及层次建模:以新疆油田重32井区齐古组油藏为例[J].沉积学报, 2020, 38(5):933-945. WU Xiaojun, SU Haibin, ZHANG Shijie, et al. Architecture anatomy and hierarchical modeling of sand-gravel braided river reservoirs:A case study of Zhong 32 well area, Qigu Formation reservoir, Fengcheng oilfield[J]. Acta Sedimentologica Sinica, 2020, 38(5):933-945.
[15] 崔瑞杰. 蒸汽驱后期二氧化碳辅助蒸汽驱实验研究[D]. 大庆:东北石油大学, 2016. CUI Ruijie. Experimental study on carbon dioxide assisted steam flooding in the later stage of steam drive[D]. Daqing:Northeast Petroleum University, 2016.
[16] 董航. 稠油油藏CO2 辅助蒸汽吞吐的实验研究[D].大庆:东北石油大学, 2015. DONG Hang. Experimental study of CO2 assisted steam in heavy oil[D]. Daqing:Northeast Petroleum University, 2015.
[17] 杨红, 王宏, 南宇峰, 等.油藏CO2驱油提高采收率适宜性评价[J].岩性油气藏, 2017, 29(3):140-146. YANG Hong, WANG Hong, NAN Yufeng, et al. Suitability evaluation of enhanced oil recovery by CO2 flooding[J]. Lithologic Reservoirs, 2017, 29(3):140-146.
[18] 周翔. 泡沫油PVT实验及数值模型研究[D].成都:成都理工大学, 2016. ZHOU Xiang. Experimental and numerical modelling study on PVT properties of foamy oil[D]. Chengdu:Chengdu University of Technology, 2016.
[19] 李文会, 刘鹏程, 吴永彬, 等.稠油油藏泡沫油渗流数学模型的建立[J].油气地质与采收率, 2016, 23(2):108-114. LI Wenhui, LIU Pengcheng, WU Yongbin, et al. A mathematical model for foamy-oil flow in heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(2):108-114.
[20] 张艳玉, 崔国亮, 孙晓飞, 等.考虑气相动态变化的泡沫油数值模拟研究[J].油气地质与采收率, 2014, 21(4):67-70. ZHANG Yanyu, CUI Guoliang, SUN Xiaofei, et al. Numerical simulation and analysis of foamy oil in consideration of the gas dynamic processes[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(4):67-70.
[21] 尚庆华, 王玉霞, 黄春霞, 等.致密砂岩油藏超临界与非超临界CO2驱油特征[J].岩性油气藏, 2018, 30(3):153-158. SHANG Qinghua, WANG Yuxia, HUANG Chunxia, et al. Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir[J]. Lithologic Reservoirs, 2018, 30(3):153-158.
[22] 左丽丽, 邢晓凯, 宁雯宇, 等.原油泡沫生成及稳定性研究进展[J].油田化学, 2016, 33(4):745-749. ZUO Lili, XING Xiaokai, NING Wenyu, et al. Research progress on generation and stability of crude oil foams[J]. Oilfield Chemistry, 2016, 33(4):745-749.
[23] 李星民, 陈和平, 韩彬, 等.超重油油藏水平井冷采加密优化研究[J].特种油气藏, 2015, 22(1):118-120. LI Xingmin, CHEN Heping, HAN Bin, et al. Research on cold recovery and infilling optimization of horizontal well in ultraviscous oil reservoir[J]. Special Oil & Gas Reservoirs, 2015, 22(1):118-120.
[24] 郑玉飞, 李翔, 徐景亮, 等.储层非均质性对自生CO2 调驱效果的影响[J].岩性油气藏, 2020, 32(2):122-128. ZHENG Yufei, LI Xiang, XU Jingliang, et al. Influence of vertical heterogeneity of reservoirs on in-situ CO2 profile control and flooding effects[J]. Lithologic Reservoirs, 2020, 32(2):122-128.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[3] 苟红光, 林潼, 房强, 张华, 李山, 程祎, 尤帆. 吐哈盆地胜北洼陷中下侏罗统水西沟群天文旋回地层划分[J]. 岩性油气藏, 2024, 36(6): 89-97.
[4] 张培军, 谢明贤, 罗敏, 张良杰, 陈仁金, 张文起, 乐幸福, 雷明. 巨厚膏盐岩形变机制解析及其对油气成藏的影响——以阿姆河右岸东部阿盖雷地区侏罗系为例[J]. 岩性油气藏, 2024, 36(6): 36-44.
[5] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[6] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[7] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[8] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[9] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[10] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[11] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[12] 钟会影, 余承挚, 沈文霞, 毕永斌, 伊然, 倪浩铭. 考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征[J]. 岩性油气藏, 2024, 36(3): 172-179.
[13] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[14] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[15] 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .