岩性油气藏 ›› 2024, Vol. 36 ›› Issue (5): 167–177.doi: 10.12108/yxyqc.20240516

• 地质勘探 • 上一篇    下一篇

准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征

魏成林1,2, 张凤奇1,2, 江青春3, 鲁雪松3, 刘刚3, 卫延召3, 李树博4, 蒋文龙4   

  1. 1. 西安石油大学 地球科学与工程学院, 西安 710065;
    2. 西安石油大学 陕西省油气成藏地质学重点实验室, 西安 710065;
    3. 中国石油勘探开发研究院, 北京 100083;
    4. 中国石油新疆油田公司勘探开发研究院, 新疆 克拉玛依 834000
  • 收稿日期:2023-06-14 修回日期:2023-08-05 出版日期:2024-09-01 发布日期:2024-09-04
  • 第一作者:魏成林(1999—),男,西安石油大学在读硕士研究生,主要研究方向为非常规油气地质学、油气成藏地质学。地址:(710065)陕西省西安市电子二路东段18号。Email:2788387330@qq.com。
  • 通信作者: 张凤奇(1981—),男,博士,教授,主要从事油气形成机制与油气成藏动力学研究与教学工作。Email:zhangfq@xsyu.edu.cn。
  • 基金资助:
    国家自然科学基金面上项目“压力—应力耦合对前陆冲断带深层—超深层碎屑岩储层异常高原生孔隙的保存机制研究”(编号:42172164)与中国石油前瞻性基础性科技攻关项目“深层超深层油气成藏过程与油气分布规律研究”(编号:2021DJ0203)联合资助。

Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin

WEI Chenglin1,2, ZHANG Fengqi1,2, JIANG Qingchun3, LU Xuesong3, LIU Gang3, WEI Yanzhao3, LI Shubo4, JIANG Wenlong4   

  1. 1. School of Earth Sciences and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    2. Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi'an Shiyou University, Xi'an 710065, China;
    3. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    4. Research institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China
  • Received:2023-06-14 Revised:2023-08-05 Online:2024-09-01 Published:2024-09-04

摘要: 利用钻井、录井、测井以及实测地层压力等资料,采用考虑多种超压机制的盆地模拟技术,综合判识了准噶尔盆地阜康凹陷东部二叠系地层超压的成因机制,定量恢复了各成因类型的超压演化特征。研究结果表明:①准噶尔盆地阜康凹陷东部二叠系发育弱超压—强超压,地层压力系数为1.36~1.88,过剩压力为12~49 MPa,不同构造部位发育的超压存在明显差异。凹陷区超压最强,地层压力系数为1.50~1.88,过剩压力为23~49 MPa;斜坡带次之,地层压力系数为1.52~1.79,过剩压力为24~37 MPa;凸起区相对最弱,地层压力系数为1.36~1.59,过剩压力为12~23 MPa。②研究区不同岩性的地层超压成因不同,芦草沟组烃源岩超压成因为生烃和欠压实作用;上乌尔禾组储层超压成因为超压传递和欠压实作用;上乌尔禾组泥岩盖层超压成因为欠压实作用。③研究区芦草沟组烃源岩和上乌尔禾组泥岩盖层的超压具有持续增大的特征,芦草沟组烃源岩生烃增压贡献率沿凸起区、斜坡带至凹陷区逐步增大,上乌尔禾组泥岩盖层欠压实增压量也具有相同变化趋势;上乌尔禾组储层超压经历了晚三叠世至晚侏罗世缓慢增大、晚侏罗世末期至早白垩世快速增大、早白垩世末期至现今缓慢增大3个阶段,其中超压传递增压对现今储层超压的贡献率为58.46%~78.86%。

关键词: 地层超压, 生烃增压, 欠压实超压, 超压传递, 上乌尔禾组, 芦草沟组, 二叠系, 阜康凹陷, 准噶尔盆地

Abstract: Based on the data of drilling,mud-logging,wire-logging,and measured formation pressure,the basin simulation technology considering multiple overpressure mechanisms was applied to identify the overpressure origins of Permian in the eastern Fukang Sag of Junggar Basin,and the evolution characteristics of overpressure of various origins were quantitatively restored. The results show that:(1)The Permian in the eastern Fukang Sag develops weak to strong overpressure,the formation pressure coefficient ranges from 1.36 to 1.88,and the excess pressure ranges from 12 to 49 MPa. The overpressure developed in different structural parts is obviously different. The overpressure in the sag is the highest,with formation pressure coefficient of 1.50-1.88 and excess pressure of 23-49 MPa,followed by slope zone,with a formation pressure coefficient of 1.52-1.79 and excess pressure of 24-37 MPa. It is relatively weakest in the uplift,with formation pressure coefficient ranging from 1.36 to 1.59 and excess pressure ranging from 12 to 23 MPa.(2)The origins of overpressure in the strata with different lithologies in the study area are different. The overpressure in the source rocks of Lucaogou Formation is caused by hydrocarbon generation and undercompaction,it is caused by overpressure transference and undercompaction in the reservoirs of the Upper Urho Formation,while it is caused by undercompaction in the mudstone cap rocks of the Upper Urho Formation.(3)The overpressure in the source rocks of the Lucaogou Formation and the mudstone cap rocks of the Upper Urho Formation in the study area has a continuous increasing characteristic. The contribution rate of hydrocarbon generation and pressure increase of the source rocks of the Lucaogou Formation gradually increases along the uplift,slope zone to the sag. The undercompacted pressure increase of the mudstone cap rocks of the Upper Urho Formation also shows the same changing trend. The overpressure in the reservoirs of Upper Urho Formation slowly increased from the Late Triassic to the Late Jurassic, then rapidly increased from the Late Jurassic to the Early Cretaceous,and slowly increased from the Late Cretaceous to present. The contribution rate of the pressurization of overpressure transference to the current reservoir overpressure ranges from 58.46% to 78.86%.

Key words: formation overpressure, hydrocarbon generation pressurization, overpressure caused by undercompaction, overpressure transference, Upper Urho Formation, Lucaogou Formation, Permain, Fukang Sag, Junggar Basin

中图分类号: 

  • TE122.2
[1] 何海清, 范土芝, 郭绪杰, 等. 中国石油"十三五"油气勘探重大成果与"十四五"发展战略[J]. 中国石油勘探, 2021, 26(1):17-30. HE Haiqing, FAN Tuzhi, GUO Xujie, et al. Major achievements in oil and gas exploration of PetroChina during the 13th Five-Year Plan period and its development strategy for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1):17-30.
[2] 吴海生, 郑孟林, 何文军, 等. 准噶尔盆地腹部地层压力异常特征与控制因素[J]. 石油与天然气地质, 2017, 38(6):1135-1146. WU Haisheng, ZHENG Menglin, HE Wenjun, et al. Formation pressure anomalies and controlling factors in central Juggar Basin[J]. Oil & Gas Geology, 2017, 38(6):1135-1146.
[3] 孙靖, 尤新才, 薛晶晶, 等. 准噶尔盆地异常压力特征及其对深层-超深层致密储层的影响[J]. 石油与天然气地质, 2023, 44(2):350-365. SUN Jing, YOU Xincai, XUE Jingjing, et al. Characteristics of abnormal pressure and its influence on deep and ultra-deep tight reservoirs in the Junggar Basin[J]. Oil & Gas Geology, 2023, 44(2):350-365.
[4] 鲁雪松, 赵孟军, 张凤奇, 等. 准噶尔盆地南缘前陆冲断带超压发育特征、成因及其控藏作用[J]. 石油勘探与开发, 2022, 49(5):859-870. LU Xuesong, ZHAO Mengjun, ZHANG Fengqi, et al. Characteristics, origin and controlling effects on hydrocarbon accumulation of overpressure in foreland thrust belt of southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(5):859-870.
[5] 鲁雪松, 张凤奇, 赵孟军, 等. 准噶尔盆地南缘高探1井超压成因与盖层封闭能力[J]. 新疆石油地质, 2021, 42(6):666-675. LU Xuesong, ZHANG Fengqi, ZHAO Mengjun, et al. Genesis of overpressure and sealing ability of caprocks in well Gaotan 1 in the southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2021, 42(6):666-675.
[6] 何生, 何治亮, 杨智, 等. 准噶尔盆地腹部侏罗系超压特征和测井响应以及成因[J]. 地球科学, 2009, 34(3):457-470. HE Sheng, HE Zhiliang, YANG Zhi, et al. Characteristics, welllog responses and mechanism of overpressure within the Jurassic Formation in central part of Junggar Basin[J]. Earth Science, 2009, 34(3):457-470.
[7] 于景维, 任伟, 王武学, 等. 阜东斜坡中侏罗统头屯河组异常高压形成机理[J]. 新疆石油地质, 2015, 36(5):521-525. YU Jingwei, REN Wei, WANG Wuxue, et al. Formation mechanism of Toutunhe abnormal pressure of Middle Jurassic in Fudong slope area, Junggar Basin[J]. Xinjiang Petroleum Geology, 2015, 36(5):512-525.
[8] GUO Xiaowen, HE Sheng, LIU Keyu, et al. Generation and evolution of overpressure caused by hydrocarbon generation in the Jurassic source rocks of the central Junggar Basin, northwestern China[J]. AAPG Bulletin, 2019, 103(7):1553-1574.
[9] 杨智, 王京红, 林森虎, 等. 准噶尔盆地腹部超压顶面附近油气成藏机制[J]. 中国石油大学学报(自然科学版), 2011, 35(3):19-25. YANG Zhi, WANG Jinghong, LIN Senhu, et al. Hydrocarbon accumulation mechanism near top overpressured surface in central Junggar Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(3):19-25.
[10] 宫亚军, 张奎华, 曾治平, 等. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏[J]. 地球科学, 2021, 46(10):3588-3600. GONG Yajun, ZHANG Kuihua, ZENG Zhiping, et al. Origin of overpressure, vertical transfer and hydrocarbon accumulation of Jurassic in Fukang Sag, Junggar Basin[J]. Earth Science, 2021, 46(10):3588-3600.
[11] 谭绍泉, 曾治平, 宫亚军, 等. 准噶尔盆地腹部超压控制烃、储演化与油气充注过程[J]. 断块油气田, 2014, 21(3):287-291. TAN Shaoquan, ZENG Zhiping, GONG Yajun, et al. Control of abnormal overpressure on hydrocarbon-reservoir evolution and hydrocarbon filling process in central of Junggar Basin[J]. Fault-Block Oil & Gas Field, 2014, 21(3):287-291.
[12] 何海清, 支东明, 唐勇, 等. 准噶尔盆地阜康凹陷康探1井重大突破及意义[J]. 中国石油勘探, 2021, 26(2):1-11. HE Haiqing, ZHI Dongming, TANG Yong, et al. A great discovery of well Kangtan 1 in the Fukang Sag in the Junggar Basin and its significance[J]. China Petroleum Exploration, 2021, 26(2):1-11.
[13] 刘俊榜, 李培俊, 胡智, 等. 准噶尔盆地东部地区燕山运动期断裂控藏机制[J]. 新疆石油地质, 2014, 35(1):5-11. LIU Junbang, LI Peijun, HU Zhi, et al. Hydrocarbon accumulation mechanisms controlled by Yanshanian faults in eastern Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(1):5-11.
[14] 刘海磊, 朱永才, 刘龙松, 等. 准噶尔盆地阜康断裂带上盘二叠系芦草沟组页岩油地质特征及勘探潜力[J]. 岩性油气藏, 2023, 35(4):90-101. LIU Hailei, ZHU Yongcai, LIU Longsong, et al. Geological characteristics and exploration potential of shale oil of Permian Lucaogou Formation in hanging wall of Fukang fault zone, Junggar Basin[J]. Lithologic Reservoirs, 2023, 35(4):90-101.
[15] 李树博, 郭旭光, 郑孟林, 等. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1):258-266. LI Shubo, GUO Xuguang, ZHENG Menglin, et al. Lithology identification of Carboniferous volcanic rocks in Xiquan area, eastern Junggar Basin[J]. Lithologic Reservoirs, 2021, 33(1):258-266.
[16] 马超, 吴孔友, 裴仰文, 等. 准噶尔盆地东部构造特征及演化定量分析[J]. 地质力学学报, 2019, 25(3):313-323. MA Chao, WU Kongyou, PEI Yangwen, et al. Quantitative analysis of tectonic characteristics and evolution in the eastern Junggar Basin[J]. Journal of Geomechanics, 2019, 25(3):313-323.
[17] 柳忠泉, 赵乐强, 曾治平, 等. 准噶尔盆地阜康断裂带二叠系芦草沟组页岩油成藏条件[J]. 岩性油气藏, 2023, 35(3):126-137. LIU Zhongquan, ZHAO Leqiang, ZENG Zhiping, et al. Shale oil accumulation conditions of Permian Lucaogou Formation in Fukang fault zone, Junggar Basin[J]. Lithologic Reservoirs, 2023, 35(3):126-137.
[18] 焦悦, 吴朝东, 王家林, 等. 天山东段地区二叠系芦草沟组沉积特征与古环境对比[J]. 古地理学报, 2023, 25(2):277-342. JIAO Yue, WU Chaodong, WANG Jialin, et al. Comparative study on sedimentary characteristics and palaeoenvironment of the Permian Lucaogou Formation in eastern Tianshan Mountains[J]. Journal of Palaeogeography(Chinese Edition), 2023, 25(2):277-342.
[19] 武小宁, 邓勇, 林煜, 等. 准噶尔盆地阜东斜坡石炭系有利岩相预测及勘探方向[J]. 岩性油气藏, 2023, 35(4):125-136. WU Xiaoning, DENG Yong, LIN Yu, et al. Prediction of favorable lithofacies and exploration direction of Carboniferous in Fudong slope, Junggar Basin[J]. Lithologic Reservoirs, 2023, 35(4):125-136.
[20] 匡立春, 支东明, 王小军, 等. 准噶尔盆地上二叠统上乌尔禾组大面积岩性-地层油气藏形成条件及勘探方向[J]. 石油学报, 2022, 43(3):325-340. KUANG Lichun, ZHI dongming, WANG Xiaojun, et al. Hydrocarbon accumulation conditions and exploration directions of large-scale lithologic-stratigraphic oil and gas reservoirs in Upper Wuerhe Formation of Upper Permain in Junggar Basin[J]. Acta Petrolei Sinica, 2022, 43(3):325-340.
[21] 李伟, 陈竹新, 黄平辉, 等. 中国中西部典型前陆盆地超压体系形成机制与大气田关系[J]. 石油勘探与开发, 2021, 48(3):536-548. LI Wei, CHEN Zhuxin, HUANG Pinghui, et al. Formation of overpressure system and its relationship with the distribution of large gas fields in typical foreland basins in central and western China[J]. Petroleum Exploration and Development, 2021, 48(3):536-548.
[22] 何玉, 周星, 李少轩, 等. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏, 2022, 34(3):60-69. HE Yu, ZHOU Xing, LI Shaoxuan, et al. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag, Bohai Bay Basin[J]. Lithologic Reservoirs, 2022, 34(3):60-69.
[23] 刘桃, 刘景东. 欠压实与流体膨胀成因超压的定量评价[J]. 石油学报, 2018, 39(9):971-979. LIU Tao, LIU Jingdong. Quantitative evaluation on overpressure generated from undercompaction and fluid expansion[J]. Acta Petrolei Sinica, 2018, 39(9):971-979.
[24] BOWERS G L. Detecting high overpressure[J]. The Leading Edge, 2002, 21(2):174-177.
[25] TINGAY M R P, HILLIS R R, SWARBRICK R E, et al. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei[J]. AAPG Bulletin, 2009, 93(1):51-74.
[26] TEIGE G M G, HERMANRUD C, WEZSAAS L, et al. The lack of relationship between overpressure and porosity in North Sea and Haltenbanken shales[J]. Marine and Petroleum Geology, 1999, 16(4):321-324.
[27] OSBORNE M J, SWARBRICK R E. Mechanisms of generating overpressure in sedimentary basins:A reevaluation[J]. AAPG Bulletin, 1997, 81(6):1023-1041.
[28] TINGAY M R P, MORLEY C K, LAIRD A, et al. Evidence for overpressure generation by kerogen-to-gas maturation in the northern Malay Basin[J]. AAPG Bulletin, 2013, 97(4):639-672.
[29] 赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9):973-998. ZHAO Jingzhou, LI Jun, XU Zeyang. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9):973-998.
[30] BOWERS G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion, 1995, 10(2):89-95.
[31] 范昌育, 王震亮, 张凤奇. 库车坳陷克拉苏冲断带传递型超压的识别、计算及其主控因素[J]. 中国石油大学学报(自然科学版), 2014, 38(3):32-38. FAN Changyu, WANG Zhenliang, ZHANG Fengqi. Identification, calculation and main controlling factors of overpressure transferred by fault in Kelasu thrust belt of Kuqa depression[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(3):32-38.
[32] 范昌育, 王震亮, 王爱国, 等. 柴达木盆地北缘鄂博梁构造带超压形成机制与高压气、水层成因[J]. 石油学报, 2015, 36(6):699-706. FAN Changyu, WANG Zhenliang, WANG Aiguo, et al. Mechanisms for overpressure generation and origin of overpressured gas and aquifer layers Eboliang structure belt, northern Qaidam Basin[J]. Acta Petrolei Sinica, 2015, 36(6):699-706.
[33] 李振华, 陈刚, 丁超, 等. 准噶尔盆地北部燕山中期古地温梯度恢复[J]. 地质科技情报, 2014, 33(4):31-36. LI Zhenhua, CHEN Gang, DING Chao, et al. Paleogeothermal gradient recovery in Middle of Yanshanian in northern Junggar Basin[J]. Geological Science and Technology Information, 2014, 33(4):31-36.
[34] 支剑丽, 杜劲松, 陈超. 准噶尔盆地及邻区的岩石圈大尺度热结构特征[J]. 地球科学, 2018, 43(增刊2):103-118. ZHI Jianli, DU Jinsong, CHEN Chao. Characteristics of largescale thermal structure in lithosphere beneath Junggar Basin and surroundings[J]. Earth Science, 2018, 43(Suppl 2):103-118.
[35] 金强. 生油岩原始有机碳恢复方法的探讨[J]. 石油大学学报(自然科学版), 1989, 13(5):1-10. JIN Qiang. The restoration of initial organic carbon in source rocks[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1989, 13(5):1-10.
[36] 张凤奇, 鲁雪松, 卓勤功, 等. 准噶尔盆地南缘下组合储层异常高压成因机制及演化特征[J]. 石油与天然气地质, 2020, 41(5):1004-1016. ZHANG Fengqi, LU Xuesong, ZHUO Qingong, et al. Genetic mechanism and evolution characteristics of overpressure in the lower play at the southern margin of the Junggar Basin, northwestern China[J]. Oil & Gas Geology, 2020, 41(5):1004-1016.
[37] 郭小文, 何生, 郑伦举, 等. 生油增压定量模型及影响因素[J]. 石油学报, 2011, 32(4):637-644. GUO Xiaowen, HE Sheng, ZHENG Lunju, et al. A quantitative model for the overpressure caused by oil generation and its influential factors[J]. Acta Petrolei Sinica, 2011, 32(4):637-644.
[38] YARDLEY G S, SWARBRICK R E. Lateral transfer:A source of additional overpressure?[J]. Marine and Petroleum Geology, 2000, 17(4):523-527.
[39] 刘得光, 王屿涛, 杨海波, 等. 准噶尔盆地阜康凹陷及周缘凸起区的原油成因与分布[J]. 中国石油勘探, 2023, 28(1):94-107. LIU Deguang, WANG Yutao, YANG Haibo, et al. Genesis types and distribution of crude oil in Fukang Sag and its peripheral bulges, Junggar Basin[J]. China Petroleum Exploration, 2023, 28(1):94-107.
[40] 杨韬政, 刘成林, 田继先, 等. 柴达木盆地大风山凸起地层压力预测及成因分析[J]. 岩性油气藏, 2023, 35(1):96-107. YANG Taozheng, LIU Chenglin, TIAN Jixian, et al. Prediction and genesis of formation pressure in Dafengshan uplift, Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(1):96-107.
[41] 范彩伟, 贾茹, 柳波, 等. 莺歌海盆地中央坳陷带成藏体系的盖层评价及控藏作用[J]. 岩性油气藏, 2023, 35(1):36-48. FAN Caiwei, JIA Ru, LIU Bo, et al. Caprock evaluation and its reservoir control of different accumulation systems in central depression zone of Yinggehai Basin[J]. Lithologic Reservoirs, 2023, 35(1):36-48.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[3] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[4] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[5] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[6] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[7] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[8] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[9] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[10] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[11] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[12] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[13] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
[14] 张文播, 李亚, 杨田, 彭思桥, 蔡来星, 任启强. 四川盆地简阳地区二叠系火山碎屑岩储层特征与成岩演化[J]. 岩性油气藏, 2024, 36(2): 136-146.
[15] 邓远, 陈轩, 覃建华, 李映艳, 何吉祥, 陶鑫, 尹太举, 高阳. 吉木萨尔凹陷二叠系芦草沟组一段沉积期古地貌特征及有利储层分布[J]. 岩性油气藏, 2024, 36(1): 136-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[5] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[6] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[7] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[8] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[9] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[10] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .