岩性油气藏 ›› 2018, Vol. 30 ›› Issue (1): 165–172.doi: 10.3969/j.issn.1673-8926.2018.01.017

• 石油工程 • 上一篇    

致密砂岩薄层压裂工艺技术研究及应用

刘建坤1,2, 蒋廷学1,2, 万有余3, 吴春方1,2, 刘世华1,2   

  1. 1. 页岩油气富集机理与有效开发国家重点实验室, 北京 100101;
    2. 中国石化石油工程技术研究院, 北京 100101;
    3. 中国石油青海油田分公司 钻采工艺研究院, 甘肃 敦煌 736202
  • 收稿日期:2017-09-26 修回日期:2017-11-28 出版日期:2018-01-21 发布日期:2018-01-21
  • 作者简介:刘建坤(1984-),男,工程师,主要从事储层改造工艺技术及理论方面的研究工作。地址:(100101)北京市朝阳区北辰东路8号北辰时代大厦6层。Email:jiankliu@163.com。
  • 基金资助:
    国家重大科技专项“复杂地层储层改造关键技术”(编号:2011ZX05031-004-003)和中国石化科技攻关项目“鄂南致密油藏两级裂缝高导流复合压裂技术研究”(编号:P17005-5)联合资助

Fracturing technology for thin layer in tight sandstone reservoir and its application

LIU Jiankun1,2, JIANG Tingxue1,2, WAN Youyu3, WU Chunfang1,2, LIU Shihua1,2   

  1. 1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China;
    2. Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China;
    3. Research Institute of Drilling & Production Technology, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China
  • Received:2017-09-26 Revised:2017-11-28 Online:2018-01-21 Published:2018-01-21

摘要: 针对致密砂岩薄层压裂面临缝高难控、改造体积小、裂缝支撑效率低及导流能力保持较差等难题,从压裂工程角度出发,通过压裂工艺参数优化模拟研究了不同黏度压裂液在不同的压裂施工参数下对裂缝延伸参数的影响规律,分析了薄层体积压裂存在的问题及难点,得出了主控因素,并在此基础上提出了薄层压裂控缝高措施及提高裂缝支撑效率工艺方法。研究表明:压裂液黏度是影响裂缝扩展、延伸的主要因素,其次是排量、液量;薄层压裂应以控缝高为前提,充分利用天然裂缝的作用,提高改造体积及裂缝支撑效率;低黏度压裂液能兼顾薄层压裂控缝高及造缝长的作用,有利于开启及扩展天然裂缝,进一步降低储层伤害,适宜作为薄层体积压裂的前置液;施工不同泵注阶段采用多黏度组合的压裂液体系,既可以扩大有效造缝体积及形成多尺度的裂缝系统,又能兼顾前置液阶段控缝高及携砂液阶段加砂的要求;采取变密度支撑剂结合多尺度组合加砂方式可实现不同粒径支撑剂与不同尺度裂缝系统的匹配,提高多尺度裂缝系统及远井地带裂缝的支撑效率。研究成果在龙凤山薄层气藏及江陵凹陷薄层油藏的多口井进行了试验,压裂后增产及稳产效果显著高于常规改造工艺,且稳产有效期明显增长,提高了该类储层压裂的有效性。

关键词: 细粒沉积岩, 储层, 芦草沟组, 非常规油气, 准噶尔盆地南缘

Abstract: In order to solve the fracturing problems in the thin layer of tight sandstone reservoir,such as difficulty of controlling fracture height,low stimulated reservoir volume, low proppant supporting efficiency,the maintaining of flow conductivity etc.,the difficulties of fracturing in such reservoir were analyzed by the means of simulating how different kinds of fracturing fluid under different fracturing construction parameters affect the fracturing parameters,and the main controlling factors were obtained. On this basis,a fracturing technological method for controlling fracture height and improving fracture supporting efficiency was formed. The result shows that the main factors affecting the expansion and extension of the fracture are the viscosity of fracturing fluid,followed by the construction displacement and the liquid quantity. The thin layer fracturing should be based on the controlling of fracture height,make full use of the natural fracture,and improve the construction volume and the supporting efficiency. Low viscosity fracturing fluid is suitable for thin layer volume fracturing for it can take into account the role of controlling fracture height and making long fracture length in thin layer fracturing,which is beneficial for opening and expanding natural fractures,and further reducing reservoir damage. The combination of multi-viscosity fracturing fluid system at different stages of pump construction can not only expand the effective fracture volume and form multi-scale fracture system,but also take into account the requirement for controlling fracture height in the front fluid stage and carrying proppant in the carrying stage. Variable density proppant combined with multi-scale proppant adding method can match different size proppant with different scale fracture system, and improve the supporting efficiency of multi-scale fracture system and fractures in far well zone. The research result was successfully used in many wells in Longfengshan thin layer gas reservoir and Jiangling thin layer oil reservoir. According to the testing result,the production was far better than that of conventional fracturing method and the stable production period was improved effectively. This method improved the effectiveness of thin layer fracturing.

Key words: fine-grained clastic rock, reservoir, Lucaogou Formation, unconventional resource, Junggar Basin

中图分类号: 

  • TE357.1
[1] 周祥,张士诚,马新仿,等.薄差层水力压裂控缝高技术研究. 陕西科技大学学报,2015,33(4):94-99. ZHOU X,ZHANG S C,MA X F,et al. Research on fracture height containment in thin and poor pay zones. Journal of Shaanxi University of Science & Technology,2015,33(4):94-99.
[2] 杨兆中,苏洲,李小刚,等.水平井交替压裂裂缝间距优化及影响因素分析. 岩性油气藏,2015,27(3):11-17 YANG Z Z,SU Z,LI X G,et al. Fracture spacing optimization for horizontal well alternating fracturing and influencing factors. Lithologic Reservoirs,2015,27(3):11-17.
[3] 熊健,曾山,王绍平. 低渗透油藏变导流垂直裂缝井产能模型.岩性油气藏,2013,25(6):122-126. XIONG J,ZENG S,WANG S P. A productivity model of vertically fractured well with varying conductivity for low permeability reservoirs. Lithologic Reservoirs,2013,25(6):122-126.
[4] 宋毅,伊向艺,卢渊.地应力对垂直裂缝高度的影响及缝高控制技术研究.石油地质与工程,2008,22(1):75-77. SONG Y,YI X Y,LU Y. Impact of earth stress on vertical fracture height and technique of fracture height control. Petroleum Geology and Engineering,2008,22(1):75-77.
[5] 李勇明,李崇喜,郭建春.砂岩气藏压裂裂缝高度影响因素分析.石油天然气学报(江汉石油学院学报),2007,29(2):87-90. LI Y M,LI C X,GUO J C. Analysis on the influence factors of fracture height of sandstone gas reservoir fracturing. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute),2007,29(2):87-90.
[6] 金智荣,张华丽,周继东,等. 薄互层大型压裂组合加砂技术研究与应用.石油钻探技术,2013,41(6):86-89. JIN Z R,ZHANG H L,ZHOU J D,et al. Research and application of massive combined sand fracturing for thin interbedded reservoirs. Petroleum Drilling Techniques,2013,41(6):86-89.
[7] 尹建,郭建春,曾凡辉.低渗透薄互层压裂技术研究及应用. 天然气与石油,2012,30(6):52-54. YIN J,GUO J C,ZENG F H. Research and application of low permeability and thin interbed fracturing technology. Natural Gas and Oi1,2012,30(6):52-54.
[8] 刘钦节,闫相祯,杨秀娟.分层地应力方法在薄互层低渗油藏大型压裂设计中的应用.石油钻采工艺,2009,31(4):83-88. LIU Q J,YAN X Z,YANG X J. Application of stratified stress method in massive hydraulic fracturing design. Oil Drilling & Production Technology,2009,31(4):83-88.
[9] 牟善波,刘晓宇.高89块低孔、特低渗薄互层大型压裂技术研究与应用.断块油气田,2006,13(2):74-76. MOU S B,LIU X Y. Study and application of big-frac treatment technology on the thin oil sandwiches of low porosity and extra-low permeability in Block Gao 89. Fault-Block Oil & Gas Fie1d,2006,13(2):74-76.
[10] 刘曦翔,张哨楠,杨鹏,等. 龙凤山地区营城组深层优质储层形成机理. 岩性油气藏,2017,29(2):117-124. LIU X X,ZHANG S N,YANG P,et al. Formation mechanism of deep high-quality reservoirs of Yingcheng Formation in Longfengshan area,Songliao Basin. Lithologic Reservoirs, 2017,29(2):117-124.
[11] 黄禹忠. 降低压裂井底地层破裂压力的措施. 断块油气田, 2005,12(1):74-76. HUANG Y Z. Measure on reducing formation fracturing pressure of well bottom. Fault-Block Oil & Gas Field,2005,12(1):74-76.
[12] 邓燕,薛仁江,郭建春.低渗透储层酸预处理降低破裂压力机理.西南石油大学学报(自然科学版),2011,33(3):125-129. DENG Y,XUE R J,GUO J C. The mechanism of high-pressure high temperature and low permeability acid pretreatment to reduce fracturing pressure. Journal of Southwest Petroleum University(Science & Technology Edition),2011,33(3):125-129.
[13] 曾凡辉,刘林,郭建春,等.酸处理降低储层破裂压力机理及现场应用.油气地质与采收率,2010,17(1):108-110. ZENG F H,LIU L,GUO J C,et al. The mechanism and field application of reducing formation fracture pressure by acid treatment. Petroleum Geology and Recovery Efficiency,2010, 17(1):108-110.
[14] 郭建春,辛军,赵金洲,等.酸处理降低地层破裂压力的计算分析.西南石油大学学报(自然科学版),2008,30(2):83-86. GUO J C,XIN J,ZHAO J Z,et al. The calculation analysis of decreasing formation fracturing pressure by acidizing pretreatment. Journal of Southwest Petroleum University(Natural Science Edition),2008,30(2):83-86.
[15] 刘平礼,兰夕堂,李年银,等.酸预处理在水力压裂中降低伤害机理研究.西南石油大学学报(自然科学版),2016,38(3):150-155. LIU P L,LAN X T,LI N Y,et al. A study on damage reduction mechanism of acid preflushing during hydraulic fracturing. Journal of Southwest Petroleum University(Natural Science Edition),2016,38(3):150-155.
[16] 蒋廷学.页岩油气水平井压裂裂缝复杂性指数研究及应用展望.石油钻探技术,2013,41(2):7-12. JIANG T X. The fracture complexity index of horizontal wells in shale oil and gas reservoirs. Petroleum Drilling Techniques, 2013,41(2):7-12.
[17] 张杰,张超谟,张占松,等.基于应力-应变曲线形态的致密气储层脆性研究.岩性油气藏,2017,29(3):126-131. ZHANG J,ZHANG C M,ZHANG Z S,et al. Brittleness of tight gas reservoirs based on stress-strain curves. Lithologic Reservoirs,2017,29(3):126-131.
[18] KLINGENSMITH B C,HOSSAINI M,FLEENOR S. Considering far-field fracture connectivity in stimulation treatment designs in the Permian Basin. SPE 178554,2015.
[19] SAHAI R,MISKIMINS J L,OLSON K E,et al. Laboratory results of proppant transport in complex fracture systems. SPE 168579,2014.
[1] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[2] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[3] 马乔雨, 张欣, 张春雷, 周恒, 武中原. 基于一维卷积神经网络的横波速度预测[J]. 岩性油气藏, 2021, 33(4): 111-120.
[4] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[5] 郑荣臣, 李宏涛, 史云清, 肖开华. 川东北元坝地区三叠系须三段沉积特征及成岩作用[J]. 岩性油气藏, 2021, 33(3): 13-26.
[6] 叶涛, 王清斌, 代黎明, 陈容涛, 崔普媛. 台地相碳酸盐岩层序划分新方法——以渤中凹陷奥陶系为例[J]. 岩性油气藏, 2021, 33(3): 95-103.
[7] 武中原, 张欣, 张春雷, 王海英. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128.
[8] 何绪全, 黄东, 赵艾琳, 李育聪. 川中地区大安寨段页岩油气储层测井评价指标体系[J]. 岩性油气藏, 2021, 33(3): 129-137.
[9] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[10] 李慧莉, 尤东华, 李建交, 谭广辉, 刘士林. 麦盖提斜坡北新1井吐依洛克组角砾岩储层特征[J]. 岩性油气藏, 2021, 33(2): 26-35.
[11] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[12] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[13] 李祖兵, 崔俊峰, 宋舜尧, 成亚斌, 卢异, 陈岑. 黄骅坳陷北大港潜山中生界碎屑岩储层特征及成因机理[J]. 岩性油气藏, 2021, 33(2): 81-92.
[14] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
[15] 张闻亭, 龙礼文, 肖文华, 魏浩元, 李铁锋, 董震宇. 酒泉盆地青西凹陷窟窿山构造带下沟组沉积特征及储层预测[J]. 岩性油气藏, 2021, 33(1): 186-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .