岩性油气藏 ›› 2018, Vol. 30 ›› Issue (3): 153–158.doi: 10.12108/yxyqc.20180317

• 油气田开发 • 上一篇    下一篇

致密砂岩油藏超临界与非超临界CO2驱油特征

尚庆华1, 王玉霞2, 黄春霞1, 陈龙龙1   

  1. 1. 陕西延长石油(集团)有限责任公司 研究院, 西安 710075;
    2. 西北大学 大陆动力学国家重点实验室, 西安 710069
  • 收稿日期:2018-01-26 修回日期:2018-03-12 出版日期:2018-05-21 发布日期:2018-05-21
  • 作者简介:尚庆华(1984-),男,硕士,工程师,主要从事油田提高采收率技术方面的研究工作。地址:(710075)陕西省西安市延长石油(集团)有限责任公司研究院。Email:sqhsuc1984@126.com。
  • 基金资助:
    国家科技支撑计划项目“陕北煤化工CO2捕集、埋存与提高采收率技术示范”(编号:2012BAC26B00)和陕西省科技统筹创新工程计划项目“陕北致密砂岩油藏CO2驱提高采收率关键技术研究及先导试验”(编号:2014KTZB03-02)联合资助

Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir

SHANG Qinghua1, WANG Yuxia2, HUANG Chunxia1, CHEN Longlong1   

  1. 1. Research Institute of Shaanxi Yanchang Petroleum(Group) Co., Ltd., Xi'an 710075, China;
    2. State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China
  • Received:2018-01-26 Revised:2018-03-12 Online:2018-05-21 Published:2018-05-21

摘要: 细管驱替实验结果表明陕北某致密砂岩油藏在实施CO2驱时无法达到混相。为了明确非混相驱下CO2超临界性质对驱油贡献的大小及对驱油特征的影响规律,开展了室内超临界和非超临界CO2驱油实验研究。结果表明:CO2超临界性质对驱油具有积极影响,在超临界压力点附近,压力由非超临界过渡到超临界的较小变化会引起驱油特征的明显改变。当累积注入量达到0.5 PV以后,CO2超临界驱油效果明显好于非超临界驱油效果;超临界驱体现优势的阶段主要是CO2注入量为0.5~1.5 PV时,相同条件下采出程度比非超临界驱最高高出约10%。超临界驱和非超临界驱换油率出现高峰的注入时段基本都在注入量约为1 PV时,但前者明显高于后者。总之,无论是在注入性能方面,还是在驱油效率和换油率等方面,超临界驱均优于非超临界驱。

关键词: 有机质孔, 面孔率, 页岩孔隙度, 干酪根, 页岩油, 资源评价

Abstract: Slim tube displacement test results indicate that CO2 miscible flooding in tight sandstone reservoir in northern Shaanxi cannot be implemented. In order to define the contribution and the influence rule of supercritical CO2 properties on displacement characteristics in the condition of immiscible flooding,supercritical and non-supercritical CO2 oil displacement experiments were conducted. The results show that supercritical state of CO2 has a positive influence on oil displacement,and the small change of pressure near by the supercritical pressure point from non-supercritical to supercritical can bring a great difference of driving characteristics. After 0.5 PV cumulative injections,the effect of supercritical CO2 flooding is significantly better than that of non-supercritical flooding. The advantage stage for supercritical flooding is mainly when the cumulative CO2 injections reach between 0.5 PV and 1.5 PV,the recovery is about 10% higher than that of non-supercritical flooding under the same conditions. The oil change ratio of supercritical flooding and non-supercritical flooding occurs peak nearly at the same injection time (about 1 PV), but the former is significantly higher than the latter. In short,whether in the injection performance,or in the oil displacement efficiency and oil change ratio,supercritical flooding is better than non-supercritical flooding.

Key words: organic pore, surface porosity, shale porosity, kerogen, shale oil, resource assessment

中图分类号: 

  • TE357
[1] 江怀友, 沈平平, 陈立滇, 等.北美石油工业二氧化碳提高采率现状研究.中国能源, 2007, 29(7):30-33. JIANG H Y, SHEN P P, CHEN L D, et al. Research status of carbon dioxide for EOR to oil industry in North America. Energy of China, 2007, 29(7):30-33.
[2] 钱伯章, 朱建芳.世界封存CO2驱油的现状与前景.能源环境保护, 2008, 22(1):1-3. QIAN B Z, ZHU J F. Present situation together with foreground that CO2 sequestrate and drive oil in the world. Energy Environmental Protection, 2008, 22(1):1-3.
[3] MIDDLETON R S, LEVINE J S, BIELICKI J M, et al. Jumpstarting commercial-scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf. Greenhouse Gases Science & Technology, 2015, 5(3):241-253.
[4] MOHAN H, CAROLUS M J, BIGLARBIGI K. The potential for additional carbon dioxide flooding projects in the United States. British Medical Journal, 2008, 2(5804):50.
[5] MORITIS G. CO2 miscible, steam dominate enhanced oil recovery processes. Oil & Gas Journal, 2010, 108(14):36-40.
[6] 杨红, 王宏, 南宇峰, 等.油藏CO2驱油提高采收率适宜性评价.岩性油气藏, 2017, 29(3):140-146. YANG H, WANG H, NAN Y F, et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146.
[7] 张冬玉.CO2驱技术及其在胜利油田的应用前景.油气田地面工程, 2010, 29(5):50-52. ZHANG D Y. CO2 flooding technology and its application prospect in Shengli oil field. Oil-Gas field Surface Engineering, 2010, 29(5):50-52.
[8] 武毅.包14块低渗透油藏注CO2开发效果研究.科学技术与工程, 2011, 11(23):5650-5653. WU Y. The development effect of CO2 flooding on low permeability reservoirs in Bao 14 block. Science Technology and Engineering, 2011, 11(23):5650-5653.
[9] 庄永涛, 刘鹏程, 张婧瑶, 等.大庆外围油田CO2驱注采参数优化研究.钻采工艺, 2014, 37(1):42-46. ZHUANG Y T, LIU P C, ZHANG J Y, et al. Optimization of injection and production parameters of CO2 flooding in Daqing oil field. Drilling & Production Technology, 2014, 37(1):42-46.
[10] 陈祖华, 汤勇, 王海妹, 等.CO2驱开发后期防气窜综合治理方法研究.岩性油气藏, 2014, 26(5):102-106. CHEN Z H, TANG Y, WANG H M, et al. Comprehensive treatment of gas channeling at the later stage of CO2 flooding. Lithologic Reservoirs, 2014, 26(5):102-106.
[11] 郭平, 黄宇, 李向良, 等.渗透率及压力对低渗油藏CO2驱油效率的影响.断块油气田, 2013, 20(6):768-771. GUO P, HUANG Y, LI X L, et al. Influence of permeability and pressure on CO2 displacement efficiency in low permeability reservoir. Fault-Block Oil and Gas Field, 2013, 20(6):768-771.
[12] MENG C, GU Y. Physicochemical characterization of produced oils and gases in immiscible and miscible CO2 flooding processes. Energy Fuels, 2013, 27(1):440-453.
[13] NOBAKHT M, MOGHADAM S, GU Y. Mutual interactions between crude oil and CO2, under different pressures. Fluid Phase Equilibria, 2008, 265(2):94-103.
[14] 李保振, 李相方, SEPEHRNOORI Kamy, 等.低渗油藏CO2驱中注采方式优化设计.西南石油大学学报(自然科学版), 2010, 32(2):101-107. LI B Z, LI X F, SEPEHRNOORI K, et al. Optimization of the injection and production schemes during CO2 flooding for tight reservoir. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(2):101-107.
[15] 陈祖华. 低渗透油藏CO2驱油开发方式与应用. 现代地质, 2015(4):950-957. CHEN Z H. Application and utilization of CO2 flooding in lowpermeability reservoir. Geoscience, 2015(4):950-957.
[16] 王欢, 廖新维, 赵晓亮.特低渗透油藏注CO2驱参数优化研究. 西南石油大学学报(自然科学版), 2014, 36(6):95-104. WANG H, LIAO X W, ZHAO X L. Research on CO2 flooding parameters optimization of extra-low permeability reservoirs. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(6):95-104.
[17] 郝永卯, 陈月明, 于会利.CO2驱最小混相压力的测定与预测. 油气地质与采收率, 2005, 12(6):64-66. HAO Y M, CHEN Y M, YU H L. Determination and prediction of minimum miscibility pressure in CO2 flooding. Petroleum Geology and Recovery Efficiency, 2005, 12(6):64-66.
[18] 国殿斌, 徐怀民.深层高压低渗油藏CO2驱室内实验研究——以中原油田胡96块为例.石油实验地质, 2014(1):102-105. GUO D B, XU H M. Laboratory experiments of CO2 flooding in deep-buried high-pressure low-permeability reservoirs:a case study of block Hu 96 in Zhongyuan oil field. Petroleum Geology & Experiment, 2014(1):102-105.
[19] 黄春霞, 汤瑞佳, 余华贵, 等.高压悬滴法测定CO2-原油最小混相压力.岩性油气藏, 2015, 27(1):127-130. HUANG C X, TANG R J, YU H G, et al. Determination of the minimum miscibility pressure of CO2 and crude oil system by hanging drop method. Lithologic Reservoirs, 2015, 27(1):127-130.
[20] HAMOUDA A A, CHUKWUDEME E A, MIRZA D. Investigating the effect of CO2 flooding on asphaltenic oil recovery and reservoir wettability. Energy Fuels, 2009, 23(2):1118-1127.
[21] 尚庆华, 吴晓东, 韩国庆, 等.CO2驱油井产能及影响因素敏感性分析.石油钻探技术, 2011, 39(1):83-88. SHANG Q H, WU X D, HAN G Q, et al. CO2 flooding well productivity and its impacting factor sensitivity analysis. Petroleum Drilling Techniques, 2011, 39(1):83-88.
[22] 杨大庆, 江绍静, 尚庆华, 等. 注气压力对特低渗透油藏CO2驱气窜的影响规律研究.钻采工艺, 2014, 37(4):63-65. YANG D Q, JIANG S J, SHANG Q H, et al. Research on influence laws of gas injection pressure on CO2 flooding gas channeling in low permeability reservoirs. Drilling & Production Technology, 2014, 37(4):63-65.
[23] 熊健, 郭平, 杜建芬, 等.特低渗透油藏注气驱长岩心物理模拟.西安石油大学学报(自然科学版), 2011, 26(2):56-59. XIONG J, GUO P, DU J F, et al. Physical simulation of gas driving with long ultralow permeability core. Journal of Xi'an Shiyou University(Natural Science Edition), 2011, 26(2):56-59.
[1] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
[2] 杜金玲, 林鹤, 纪拥军, 江洪, 许文莉, 伍顺伟. 地震与微地震融合技术在页岩油压后评估中的应用[J]. 岩性油气藏, 2021, 33(2): 127-134.
[3] 刘博, 徐刚, 纪拥军, 魏路路, 梁雪莉, 何金玉. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏, 2020, 32(6): 172-180.
[4] 王朋飞, 金璨, 臧小鹏, 田黔宁, 刘国, 崔文娟. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏, 2020, 32(5): 46-53.
[5] 张道伟, 薛建勤, 伍坤宇, 陈晓冬, 王牧, 张庆辉, 郭宁. 柴达木盆地英西地区页岩油储层特征及有利区优选[J]. 岩性油气藏, 2020, 32(4): 1-11.
[6] 王朋飞, 姜振学, 杨彩虹, 金璨, 吕鹏, 王海华. 重庆周缘龙马溪组和牛蹄塘组页岩有机质孔隙发育特征[J]. 岩性油气藏, 2019, 31(3): 27-36.
[7] 郭秋麟, 武娜, 任洪佳, 陈宁生, 谌卓恒. 中低成熟阶段页岩有机质孔预测模型探讨[J]. 岩性油气藏, 2017, 29(6): 1-7.
[8] 苟红光,赵莉莉,梁桂宾,佘家朝,刘俊田. EUR 分级类比法在致密油资源评价中的应用—— 以三塘湖盆地芦草沟组为例[J]. 岩性油气藏, 2016, 28(3): 27-33.
[9] 张廷山, 彭 志, 杨 巍, 马燕妮, 张 洁 . 美国页岩油研究对我国的启示[J]. 岩性油气藏, 2015, 27(3): 1-10.
[10] 付小东,饶 丹,秦建中,申宝剑,许 锦,杨振恒. 柴达木盆地北缘地区中侏罗统大煤沟组页岩油形成地质条件[J]. 岩性油气藏, 2014, 26(6): 20-27.
[11] 柳波,王蕃,冉清昌,李梅,戴春雷,王猛. 松辽盆地北部青一段含油泥页岩储集特征浅析[J]. 岩性油气藏, 2014, 26(5): 64-68.
[12] 王民,石蕾,王文广,黄爱华,陈国辉,田善思. 中美页岩油、致密油发育的地球化学特征对比[J]. 岩性油气藏, 2014, 26(3): 67-73.
[13] 熊镭,张超谟,张冲,谢冰,丁一,韩淑敏. A 地区页岩气储层总有机碳含量测井评价方法研究[J]. 岩性油气藏, 2014, 26(3): 74-78.
[14] 祝彦贺,胡前泽,陈桂华,陈晓智. 北美A-29 区块页岩油资源潜力分析[J]. 岩性油气藏, 2013, 25(3): 66-70.
[15] 郭秋麟,陈宁生,宋焕琪,吴晓智,谢红兵. 致密油聚集模型与数值模拟探讨———以鄂尔多斯盆地延长组致密油为例[J]. 岩性油气藏, 2013, 25(1): 4-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .