岩性油气藏 ›› 2019, Vol. 31 ›› Issue (2): 105–114.doi: 10.12108/yxyqc.20190212

• 油气地质 • 上一篇    下一篇

湘中坳陷海陆过渡相页岩吸附能力及控制因素

杨滔1,2, 曾联波1, 聂海宽2, 冯动军2, 包汉勇3, 王濡岳1,2   

  1. 1. 中国石油大学(北京)地球科学学院, 北京 102249;
    2. 中国石油化工股份有限公司 石油勘探开发研究院, 北京 100083;
    3. 中国石化江汉油田分公司 勘探开发研究院, 武汉 430223
  • 收稿日期:2018-09-18 修回日期:2018-11-25 出版日期:2019-03-21 发布日期:2019-03-21
  • 第一作者:杨滔(1994-),男,中国石油大学(北京)在读硕士研究生,研究方向为页岩储层特征。地址:(102249)北京市昌平区府学路18号中国石油大学(北京)地球科学学院。Email:barryyt@sina.com
  • 通信作者: 曾联波(1967-),男,博士,教授,主要从事储层裂缝表征预测与地应力分析方面的研究工作。Email:lbzeng@sina.com。
  • 基金资助:
    石油化工联合基金项目“页岩油气甜点预测的储层地质力学基础理论研究”(编号:U1663203)资助

Adsorption capacity and controlling factors of marine-continental transitional shale in Xiangzhong Depression

YANG Tao1,2, ZENG Lianbo1, NIE Haikuan2, FENG Dongjun2, BAO Hanyong3, WANG Ruyue1,2   

  1. 1. College of Geosciences, China University of Petroleum, Beijing 102249, China;
    2. Research Institute of Petroleum Exploration and Production, Sinopec, Beijing 100083, China;
    3. Research Institute of Exploration and Development, Sinopec Jianghan Oilfield Company, Wuhan 430223, China
  • Received:2018-09-18 Revised:2018-11-25 Online:2019-03-21 Published:2019-03-21

摘要: 为了研究湘中坳陷二叠系龙潭组和大隆组黑色页岩的吸附能力及其控制因素,开展了全岩矿物含量分析、有机地球化学分析、储层物性分析和等温吸附实验研究。结果表明:①页岩主要为硅质页岩,石英质量分数平均为34.4%,且多为生物成因硅,黏土矿物质量分数平均为24.4%,矿物组分特征与美国Barnett页岩和四川盆地古生界优质海相页岩类似。②页岩中干酪根类型以Ⅱ2型为主,处于成熟阶段,有机碳质量分数平均为2.63%,有机质孔发育,主要为微孔和中孔。③页岩吸附能力较强,饱和吸附质量体积为0.75~8.60 m3/t,平均为4.51 m3/t,具有良好的甲烷吸附能力。④页岩吸附能力主要受控于有机碳含量、氯仿沥青"A"、总烃、石英含量、岩石密度和孔隙结构。其中,有机碳含量对页岩吸附能力的影响最为显著。湘中坳陷海陆过渡相页岩具有较大的勘探潜力。

关键词: 海陆过渡相, 页岩气, 有机碳含量, 吸附能力, 二叠系, 湘中坳陷

Abstract: In order to study the adsorption capacity and controlling factors of black shale of Permian Longtan Formation and Dalong Formation in Xiangzhong Depression,a variety of experimental analyses such as total rock mineral content,organic geochemistry,reservoir physical properties and isothermal adsorption were carried out. The results show that:(1) Shales are mainly siliceous shales with an average quartz mass fraction of 34.4%,mostly biogenic silicon,and average clay mineral mass fraction of 24.4%. The mineral composition characteristics are similar to those of Barnett shale in the United States and high-quality marine shale of Paleozoic in Sichuan Basin. (2) Kerogen in shale is mainly type Ⅱ2,which is in mature stage. The average TOC mass fraction is 2.63%. Organic pores are developed,mainly micropores and mesopores. (3) Shale has a strong adsorption capacity,and the saturated adsorption mass volume is 0.75-8.60 m3/t,with an average of 4.51 m3/t,which has good methane adsorption capacity. (4) Shale adsorption capacity is mainly controlled by TOC content,chloroform asphalt "A",total hydrocarbon,quartz content,rock density and pore structure. Among them,TOC content is the most significant controlling factor. The marine-continental transitional shale in Xiangzhong Depression has great exploration potential.

Key words: marine-continental transitional facies, shale gas, TOC content, adsorption capacity, Permian, Xiangzhong Depression

中图分类号: 

  • TE122
[1] 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布.天然气工业, 2004, 24(7):15-18. ZHANG J C, JIN Z J, YUAN M S. Reservoiring mechanism of shale gas and its distribution. Natural Gas Industry, 2004, 24(7):15-18.
[2] CURTIS J B. Fractured shale-gas systems. AAPG Bulletin, 2002, 86(11):1921-1938.
[3] 李新景, 胡素云, 程克明. 北美裂缝性页岩气勘探开发的启示.石油勘探与开发, 2007, 34(4):392-400. LI X J, HU S Y, CHENG K M. Suggestions from the development of fractured shale gas in North America. Petroleum Exploration and Development, 2007, 34(4):392-400.
[4] 朱汉卿, 贾爱林, 位云生, 等. 基于氩气吸附的页岩纳米级孔隙结构特征.岩性油气藏, 2018, 30(2):77-84. ZHU H Q, JIA A L, WEI Y S, et al. Nanopore structure characteristics of shale based on Ar adsorption. Lithologic Reservoirs, 2018, 30(2):77-84.
[5] 何建华, 丁文龙, 付景龙, 等. 页岩微观孔隙成因类型研究.岩性油气藏, 2014, 26(5):30-35. HE J H, DING W L, FU J L, et al. Study on genetic type of micropore in shale reservoir. Lithologic Reservoirs, 2014, 26(5):30-35.
[6] 陈居凯, 朱炎铭, 崔兆帮, 等. 川南龙马溪组页岩孔隙结构综合表征及其分形特征.岩性油气藏, 2018, 30(1):55-62. CHEN J K, ZHU Y M, CUI Z B, et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):55-62.
[7] 毕赫, 姜振学, 李鹏, 等. 渝东南地区龙马溪组页岩吸附特征及其影响因素.天然气地球科学, 2014, 25(2):302-310. BI H, JIANG Z X, LI P, et al. Adsorption characteristic and influence factors of Longmaxi shale in southeastern Chongqing. Natural Gas Geoscience, 2014, 25(2):302-310.
[8] 顾忠安, 郑荣才, 王亮, 等. 渝东涪陵地区大安寨段页岩储层特征研究.岩性油气藏, 2014, 26(2):67-73. GU Z A, ZHENG R C, WANG L, et al. Characteristics of shale reservoir of Da'anzhai segment in Fuling area,eastern Chongqing. Lithologic Reservoirs, 2014, 26(2):67-73.
[9] 周启伟, 李勇, 汪正, 等. 龙门山前陆盆地南段须家河组页岩有机地球化学特征.岩性油气藏, 2016, 28(6):45-51. ZHOU Q W, LI Y, WANG Z, et al. Organic geochemical characteristics of shale of Xujiahe Formation in the southern Longmen Mountain foreland basin. Lithologic Reservoirs, 2016, 28(6):45-51.
[10] 顾志翔, 彭勇民, 何幼斌, 等. 湘中坳陷二叠系海陆过渡相页岩气地质条件.中国地质, 2015, 42(1):288-299. GU Z X, PENG Y M, HE Y B, et al. Geological conditions of Permian sea-land transitional facies shale gas in the Xiangzhong Depression. Geology in China, 2015, 42(1):288-299.
[11] 刘光祥, 金之钧, 邓模, 等. 川东地区上二叠统龙潭组页岩气勘探潜力.石油与天然气地质, 2015, 36(3):481-487. LIU G X, JIN Z J, DENG M, et al. Exploration potential for shale gas in the Upper Permian Longtan Formation in eastern Sichuan Basin. Oil & Gas Geology, 2015, 36(3):481-487.
[12] 包书景, 林拓, 聂海宽, 等. 海陆过渡相页岩气成藏特征初探:以湘中坳陷二叠系为例.地学前缘, 2016, 23(1):44-53. BAO S J, LIN T, NIE H K, et al. Preliminary study of the transitional facies shale gas reservoir characteristics:Taking Permian in Xiangzhong Depression as an example. Geoscience Frontiers, 2016, 23(1):44-53.
[13] 陈洁, 潘树仁, 周国兴. 江苏下扬子区二叠系龙潭组-大隆组页岩气勘探前景分析.中国煤炭地质, 2013, 25(10):22-25. CHEN J, PAN S R, ZHOU G X. Permian Longtan FormationDalong Formation shale gas exploration prospect analysis in Lower Yangtze area, Jiangsu. Coal Geology of China, 2013, 25(10):22-25.
[14] ANCELL K L, PRICE H S, FORD W K. An investigation of the gas producing and storage mechanism of the Devonian Shale at Cottageville Field. SPE 7938, 1979.
[15] LANGMUIR I. The adsorption of gases on plane surface glass, mica and platinum. Journal of the American Chemical Society, 1918, 40(9):1361-1403.
[16] ROSS D J K, BUSIN R M. Shale gas potential of the lower Jurassic Gordondale member, northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 2007, 55(1):51-75.
[17] ROSS D J K, BUSIN R M. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoir. Fuel, 2007, 86(17):2696-2706.
[18] 申宝剑, 秦建中, 冯丹, 等. 烃源岩有机碳含量与生排油效率动态评价.石油实验地质, 2017, 39(4):505-510. SHEN B J, QIN J Z, FENG D, et al. Dynamic assessment of organic carbon content and hydrocarbon generation and expulsion efficiency in source rocks. Petroleum Geology and Experiment, 2017, 39(4):505-510.
[19] 董春梅, 马存飞, 栾国强, 等. 泥页岩热模拟实验及成岩演化模式. 沉积学报, 2015, 33(5):1053-1061. DONG C M, MA C F, LUAN G Q, et al. Pyrolysis simulation experiment and diagenesis evolution pattern of shale. Acta Sedimentologica Sinica, 2015, 33(5):1053-1061.
[20] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 2016, 23(1):1-10. JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin. Geoscience Frontiers, 2016, 23(1):1-10.
[21] ROWE H D, LOUCKS R G, RUPPEL S, et al. Mississippian Barnett Formation,Fort Worth Basin, Texas:Bulk geochemical inferences and Mo-TOC constraint on the severity of hydrographic restriction. Chemical Geology, 2008, 257(1/2):16-25.
[22] ANGEL D L. Carbon flow within the colonial radiolarian microcosm. Symbiosis, 1991, 10(1/3):195-217.
[23] YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terrances. Sedimentary Geology, 1987, 52(1):65-108.
[24] 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组含气页岩中石英成因研究.天然气地球科学, 2016, 27(2):377-386. ZHAO J H, JIN Z J, JIN Z K, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin. Natural Gas Geoscience, 2016, 27(2):377-386.
[25] 陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展.地球科学进展, 2018, 33(11):1112-1129. CHEN Q L, HUANG C G. Research progress of the modification of reservoirs by dissolution in sedimentary rock. Advances in Earth Science, 2018, 33(11):1112-1129.
[26] PASSEY Q R, BOHACES K M, ESCH W L, et al. From oilprone source rock to gas-producing shale reservoir, geologic and petrophysical characterization of unconventional shale gas reservoirs. International Oil and Gas Conference and Exhibition in China, Beijing, 2010.
[27] 谢卫东, 王猛, 代旭光. 渝东南地区下志留统龙马溪组页岩吸附CO2 特征及影响因素分析.河南理工大学学报(自然科学版), 2018, 37(6):80-88. XIE W D, WANG M, DAI X G. CO2 adsorption characteristics and its affecting factors of Lower Silurian, Longmaxi Formation shale in southeast Chongqing. Journal of Henan Polytechnic University(Natural Science), 2018, 37(6):80-88.
[28] 曾芳. 不同类型泥页岩吸附能力定量表征研究.大庆:东北石油大学, 2014. ZENG F. A study on quantitative characterization of adsorption capacity of shale. Daqing:Northeast Petroleum University, 2014.
[29] 杨琛, 盛国英, 党志. 干酪根对多环芳烃吸附机理的初步研究.环境化学, 2007, 26(4):472-475. YANG C, SHENG G Y, DANG Z. Sorption mechanism of polycyclic aromatic hydrocarbons (PAHs) on kerogen. Environmental Chemistry, 2007, 26(4):472-475.
[30] SCHIEBER J G B. On the origin and significance of pyrite spheres in Devonian black shales of north America. Journal of Sedimentary Research, 2001, 71:155-166.
[31] 徐祖新, 韩淑敏, 王启超. 中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义.岩性油气藏, 2015, 27(2):31-37. XU Z X, HAN S M, WANG Q C. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in middle Yangtze area. Lithologic Reservoirs, 2015, 27(2):31-37.
[32] 聂海宽, 张金川. 页岩气聚集条件及含气量计算:以四川盆地及其周缘下古生界为例.地质学报, 2012, 86(2):349-361. NIE H K, ZHANG J C. Shale gas accumulation conditions and gas content calculation:a case study of Sichuan Basin and its periphery in the Lower Paleozoic. Acta Geologica Sinica, 2012, 86(2):349-361.
[1] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[2] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[3] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[4] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[5] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[6] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[7] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[8] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[9] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[10] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[11] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[12] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[13] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[14] 张文播, 李亚, 杨田, 彭思桥, 蔡来星, 任启强. 四川盆地简阳地区二叠系火山碎屑岩储层特征与成岩演化[J]. 岩性油气藏, 2024, 36(2): 136-146.
[15] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .