岩性油气藏 ›› 2019, Vol. 31 ›› Issue (4): 149–156.doi: 10.12108/yxyqc.20190416

• 石油工程 • 上一篇    下一篇

考虑应力敏感和复杂运移的页岩气藏压力动态分析

姜瑞忠1, 张福蕾1, 崔永正1, 潘红2, 张旭1, 张春光1, 沈泽阳1   

  1. 1. 中国石油大学(华东)石油工程学院, 山东 青岛 266580;
    2. 中国石油大港油田分公司 采油工艺研究院, 天津 300280
  • 收稿日期:2018-11-12 修回日期:2019-02-06 出版日期:2019-07-21 发布日期:2019-06-21
  • 第一作者:姜瑞忠(1964-),男,博士,教授,博士生导师,主要从事油气田开发方面的教学与研究工作。地址:(266580)山东省青岛市黄岛区长江西路66号中国石油大学(华东)。Email:19870005@upc.edu.cn。
  • 基金资助:
    国家自然科学基金项目"致密储层体积压裂缝网扩展模拟研究"(编号:51574265)、国家重大科技专项"厚层非均质气藏产能评价及预测技术"(编号:2016ZX05027004-004)和"低渗、特低渗油藏水驱扩大波及体积方法与关键技术"(编号:2017ZX05013-002)联合资助

Pressure dynamic analysis of shale gas reservoirs considering stress sensitivity and complex migration

JIANG Ruizhong1, ZHANG Fulei1, CUI Yongzheng1, PAN Hong2, ZHANG Xu1, ZHANG Chunguang1, SHEN Zeyang1   

  1. 1. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. Research Institute of Oil Production Technology, PetroChina Dagang Oilfield Company, Tianjin 300280, China
  • Received:2018-11-12 Revised:2019-02-06 Online:2019-07-21 Published:2019-06-21

摘要: 页岩气藏渗透率极低,储层存在很强的应力敏感性,所以需对其进行水力压裂。通过分析吸附解吸、Knudsen扩散、非稳态窜流和渗流等多种气体运移机制来建立页岩气藏复合模型,采用Mathieu函数、Pedrosa变量代换、正则摄动理论、拉普拉斯变换和Stehfest数值反演等方法来求解数学模型,并绘制出无因次拟压力曲线,同时对渗透率模量、SRV半径、外区裂缝渗透率、扩散系数和解吸压缩系数等相关参数进行敏感性分析。结果显示:气体流动阶段可划分为9段,渗透率模量的增加导致气井定产量生产时所需压差增大,而SRV半径和解吸压缩系数的增大使得压差减小;较大的外区裂缝渗透率与较小的流度比相对应,扩散系数越大,页岩基质表观渗透率越大,窜流发生的越早。提出的试井模型可提高页岩气藏压力动态分析的准确性,对压裂开发页岩气藏具有一定的理论指导意义。

关键词: 页岩气, 复合模型, 压力, 应力敏感, 椭圆SRV, 压裂井

Abstract: The permeability of shale gas reservoirs is extremely low,and the formation is stress-sensitive strongly. The hydraulic fracturing is one of the effective exploitation methods. A composite shale gas reservoir model was established by introducing some gas migration mechanisms,such as shale gas adsorption and desorption,Knudsen diffusion,unsteady cross flow and seepage. Mathieu function,Pedrosa variable substitution,regular perturbation theory,Laplace transform and Stehfest numerical inversion methods were used to solve the mathematical model,and then the typical curves of dimensionless pseudo-pressure were plotted. The sensitivity analyses were conducted on the relevant parameters,such as permeability modulus,SRV radius,outer region fracture permeability,diffusion coefficient and desorption compressibility. The results show that the gas flow can be divided into nine stages. A larger permeability modulus resulted in a larger pressure difference required for gas well constant production. The larger the SRV radius and the desorption compressibility are,the smaller the pressure difference is. The larger fracture permeability in outer zone corresponds to a smaller mobility ratio. The larger the diffusion coefficient is,the larger the apparent permeability of the shale matrix is,and the earlier the cross flow occurs. The proposed well test model can improve the accuracy of pressure dynamic analysis of shale gas reservoirs and has certain theoretical guiding significance for fracturing development of shale gas reservoirs.

Key words: shale gas, composite model, pressure, stress sensitivity, elliptical SRV, fractured well

中图分类号: 

  • TE348
[1] 张小龙,张同伟,李艳芳,等.页岩气勘探和开发进展综述. 岩性油气藏,2013,25(2):116-122. ZHANG X L,ZHANG T W,LI Y F,et al. Research advance in exploration and development of shale gas. Lithologic Reservoirs,2013,25(2):116-122.
[2] WORRALL F,WADE A J,DAVIES R J,et al. Setting the baseline for shale gas:Establishing effective sentinels for water quality impacts of unconventional hydrocarbon development. Journal of Hydrology,2019,571:516-527.
[3] 李智锋,李治平,苗丽丽,等.页岩气藏纳米孔隙气体渗流特征分析. 天然气地球科学,2013,24(5):1042-1047. LI Z F,LI Z P,MIAO L L,et al. Gas flow characteristics in nanoscale pores of shale gas. Natural Gas Geoscience,2013,24(5):1042-1047.
[4] 张烈辉,单保强,赵玉龙,等.页岩气藏表观渗透率和综合渗流模型建立. 岩性油气藏,2017,29(6):108-118. ZHANG L H,SHAN B Q,ZHAO Y L,et al. Establishment of apparent permeability model and seepage flow model for shale reservoir. Lithologic Reservoirs,2017,29(6):108-118.
[5] 王永辉,卢拥军,李永平,等.非常规储层压裂改造技术进展及应用.石油学报,2012,33(增刊1):149-158. WANG Y H,LU Y J,LI Y P,et al. Progress and application of hydraulic fracturing technology in unconventional reservoir. Acta Petrolei Sinica,2012,33(Suppl 1):149-158.
[6] CLARKSON C R. Production data analysis of unconventional gas wells:Review of theory and best practices. International Journal of Coal Geology,2013,109/110:101-146.
[7] 张驰. 涪陵页岩气田平桥区块深层气井压裂工艺优化与应用.岩性油气藏,2018,30(6):160-168. ZHANG C. Optimization and application of deep gas well fracturing in Pingqiao block of Fuling shale gas field. Lithologic Reservoirs,2018,30(6):160-168.
[8] 侯冰,陈勉,李志猛,等.页岩储集层水力裂缝网络扩展规模评价方法.石油勘探与开发,2014,41(6):763-768. HOU B,CHEN M,LI Z M,et al. Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs. Petroleum Exploration and Development,2014,41(6):763-768.
[9] 蒋廷学,王海涛,卞晓冰,等.水平井体积压裂技术研究与应用. 岩性油气藏,2018,30(3):1-11. JIANG T X,WANG H T,BIAN X B,et al. Volume fracturing technology for horizontal well and its application. Lithologic Reservoirs,2018,30(3):1-11.
[10] XIE J,YANG C D,GUPTA N,et al. Integration of shale-gasproduction data and microseismic for fracture and reservoir properties with the fast marching method. SPE Journal,2015,20(2):347-359.
[11] ZHANG Q,SU Y L,WANG W D,et al. Performance analysis of fractured wells with elliptical SRV in shale reservoirs. Journal of Natural Gas Science and Engineering,2017,45:380-390.
[12] 姜瑞忠,滕文超,徐建春.压裂改造复合页岩气藏不稳定压力与产量分析方法. 天然气工业,2015,35(9):42-47. JIANG R Z,TENG W C,XU J C. Transient pressure and production analysis methods for composite shale gas reservoirs stimulated by fracturing. Natural Gas Industry,2015,35(9):42-47.
[13] 黄玲,曾立新,黄成惠,等. 页岩储层敏感性特征实验研究. 天然气技术与经济,2012,6(5):42-44. HUANG L,ZENG L X,HUANG C H,et al. Experimental study on fluid sensitivity of shale reservoir. Natural Gas Technology and Economy,2012,6(5):42-44.
[14] 尹洪军,赵二猛,王磊,等.考虑应力敏感的页岩气藏垂直裂缝井压力动态分析. 水动力学研究与进展,2015,30(4):412417. YIN H J,ZHAO E M,WANG L,et al. Pressure behavior analysis for vertical fractured well with stress sensitivity in shale gas reservoirs. Chinese Journal of Hydrodynamics,2015,30(4):412-417.
[15] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析. 天然气地球科学,2018,29(8):1190-1197. HUANG Y,LI X P,TAN X H. Research on rate decline analysis for horizontal well in triple-porosity composite reservoir. Natural Gas Geoscience,2018,29(8):1190-1197.
[16] DENG J,ZHU W Y,MA Q. A new seepage model for shale gas reservoir and productivity analysis of fractured well. Fuel,2014, 124:232-240.
[17] JIA Y L,FAN X Y,NIE R S,et al. Flow modeling of well test analysis for porous-vuggy carbonate reservoirs. Transport in Porous Media,2013,97(2):253-279.
[18] LANGMUIR I. The desorption of gases on plane surfaces of glass,mica and platinum. Journal of the American Chemical Society,1918,40(9):1361-1403.
[19] 郭平.低渗透致密砂岩气藏开发机理研究. 北京:石油工业出版社,2009. GUO P. Research on development mechanism of low permeability tight sandstone gas reservoir. Beijing:Petroleum Industry Press,2009.
[20] MCLACHLAN N W. Theory and application of mathieu functions. Oxford:Oxford University Press,1951.
[21] VAN EVERDINGEN A F,HURST W. The application of the Laplace transformation to flow problems in reservoirs. Journal of Petroleum Technology,1949,1(12):305-324.
[22] STEHFEST H. Algorithm 368:Numerical inversion of Laplace transforms. Communications of the ACM,1970,13(1):47-49.
[1] 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22.
[2] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[3] 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188.
[4] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[5] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[6] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[7] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[8] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[9] 钟会影, 余承挚, 沈文霞, 毕永斌, 伊然, 倪浩铭. 考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征[J]. 岩性油气藏, 2024, 36(3): 172-179.
[10] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[11] 魏全超, 李小佳, 李峰, 郝景宇, 邓双林, 吴娟, 邓宾, 王道军. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70.
[12] 卜旭强, 王来源, 朱莲花, 黄诚, 朱秀香. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
[13] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[14] 郑彬, 董翱, 张源智, 张毅, 苏珊, 张士超, 樊津津, 骆垠山. 济阳坳陷渤南洼陷古近系沙河街组流体压力建场过程及其石油地质意义[J]. 岩性油气藏, 2023, 35(2): 59-67.
[15] 应凯莹, 蔡长娥, 梁煜琦, 陈鸿, 尚文亮, 苏桂娇. 伊通盆地岔路河断陷古近系断层的垂向封闭性及其控藏作用[J]. 岩性油气藏, 2023, 35(2): 136-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .