岩性油气藏 ›› 2020, Vol. 32 ›› Issue (3): 14–23.doi: 10.12108/yxyqc.20200302

• 油气地质 • 上一篇    下一篇

低阶煤储层微观孔隙结构多尺度联合表征

杨甫1,2,3, 贺丹2,3, 马东民1,2, 段中会2,3, 田涛2,3, 付德亮2,3   

  1. 1. 西安科技大学 地质与环境学院, 西安 710054;
    2. 自然资源部煤炭资源勘查与综合利用重点实验室, 西安 710021;
    3. 陕西省煤田地质集团有限公司, 西安 710021
  • 收稿日期:2019-05-20 修回日期:2019-09-04 出版日期:2020-05-21 发布日期:2020-04-30
  • 第一作者:杨甫(1986-),男,博士,高级工程师,主要从事盆地构造与非常规天然气地质方面的研究。地址:(710021)陕西省西安市经济开发区文景路26号。Email:yangpu666@163.com。
  • 基金资助:
    中国博士后基金面上项目“不同煤阶煤岩组分对煤层气解吸过程的吸附热差异”(编号:2018M633642XB)、自然资源部重点实验室项目和陕西省博士后基金“鄂尔多斯盆地南缘三叠系页岩储层孔隙特征及页岩气富集规律”(编号:ZP2018-2,2018BSHQYXMZZ08)和陕西省煤田地质集团有限公司重大科研课题“陕西省富油煤生油潜力评价及高效开发利用技术”(编号:SMDZ-2019ZD-1)联合资助

Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir

YANG Fu1,2,3, HE Dan2,3, MA Dongmin1,2, DUAN Zhonghui2,3, TIAN Tao2,3, FU Deliang2,3   

  1. 1. College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China;
    2. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an 710021, China;
    3. Shaanxi Coal Geology Group Co., Ltd., Xi'an 710021, China
  • Received:2019-05-20 Revised:2019-09-04 Online:2020-05-21 Published:2020-04-30

摘要: 多尺度微观孔隙结构对低阶煤储层煤层气吸附/解吸过程的研究具有重要意义。以黄陇侏罗系煤田和陕北侏罗系煤田低阶煤为研究对象,采用压汞、液氮吸附和CO2吸附等测试手段表征低阶煤储层的孔径分布、孔隙类型等参数,联合核磁共振测试定量分析低阶煤阶段孔径和多尺度孔径分布特征。结果表明,低阶煤孔隙以微孔为主,大孔次之。微孔、大孔、介孔对比表面积的贡献率依次减小。低阶煤储层孔隙类型以两端开口的“柱状孔”和“墨水瓶孔”为主,孔隙连通性较好。核磁共振法获取样品的T2c截止值为1.4~155.2 ms,变化较大,束缚流体饱和度(BVI)为79.21%~96.96%,可动流体饱和度低。低阶煤储层的孔隙结构复杂多样,单一测试技术与联合计算表征方法在表征低阶煤储层的孔隙结构时差异较大。

关键词: 孔隙类型, 孔径分布, 核磁共振, 低阶煤储层, 侏罗系, 黄陇煤田, 陕北煤田

Abstract: The multi-scale micro-pore structure is of great significance to the study of the adsorption/desorption process of coalbed methane in low rank coal reservoirs. Taking Jurassic Huanglong coalfield and Shaanbei coalfield as examples,the pore size distribution andpore types of low-rank coal reservoirs were measured by mercury injection, liquid nitrogen adsorption and CO2 adsorption. Combined with nuclear magnetic resonance,the pore size and multi-scale pore size distribution characteristics of low-rank coal were quantitatively analyzed. The results show that the pores of low-rank coal are mainly micropores,followed by macropores. The contribution rate of micropores,macropores and mesoporous pores to specific surface area decreased in turn.The pore types of low-rank coal reservoirs are mainly "columnar pore" and "ink bottle hole",which have good pore connectivity. The T2c cut-off value of the samples obtained by NMR method is 1.4-155.2 ms,which varies greatly. The bound fluid saturation(BVI) is 79.21%-96.96%,and the movable fluid saturation is low. The pore structure of low-rank coal reservoirs is complex and diverse,and there are great differences between single test technique and combined computing characterization method in the characterization of pore structures of low-rank coal reservoirs.

Key words: pore type, pore size distribution, nuclear magnetic resonance, low rank coal reservoir, Jurassic, Huanglong coalfield, Shaanbei coalfield

中图分类号: 

  • TE122.2
[1] 姚艳斌,刘大锰,黄文辉,等.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究.煤炭学报,2006,31(2):163-168. YAO Y B,LIU D M,HUANG W H,et al. Research on the porefractures system properties of coalbed methane reservoirs and recovery in Huainan and Huaibei coal-fields. Journal of China coal society,2006,31(2):163-168.
[2] 李子文,林柏泉,郝志勇,等.煤体孔径分布特征及其对瓦斯吸附的影响.中国矿业大学学报,2013,42(6):1047-1053. LI Z W,LIN B Q,HAO Z Y,et al. Characteristics of pore size distribution of coal and its impacts on gas adsorption. Journal of China University of Mining&Technology,2013,42(6):1047-1053.
[3] 张宪国,张涛,林承焰.基于孔隙分形特征的低渗透储层孔隙结构评价.岩性油气藏,2013,25(6):40-45. ZHANG X G,ZHANG T,LIN C Y. Pore structure evaluation of low permeability reservoir based on pore fractal features. Lithologic Reservoirs,2013,25(6):40-45.
[4] 李传亮,朱苏阳,彭朝阳,等.煤层气井突然产气机理分析.岩性油气藏,2017,29(2):145-149. LI C L,ZHU S Y,PENG C Y,et al. Mechanism of gas production rate outburst in coalbed methane wells. Lithologic Reservoirs,2017,29(2):145-149.
[5] 尹帅,谢润成,丁文龙,等.常规及非常规储层岩石分形特征对渗透率的影响.岩性油气藏,2017,29(4):81-90. YIN S,XIE R C,DING W L,et al. Influences of fractal characteristics of reservoir rocks on permeability. Lithologic Reservoirs, 2017,29(4):81-90.
[6] 中国国家标准化管理委员会. GB/T 21650.1-2008压汞法和气体吸附法测定固体材料孔径分布和孔隙度第1部分:压汞法.北京:中国标准出版社,2008. Standardization Management Committee of the People's Republic of China. GB/T 21650.1-2008 Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption Part 1:Mercury porosimetry. Beijing:Standards Press of China, 2008.
[7] 田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征.石油学报,2012,33(3):419-427. TIAN H,ZHANG S C,LIU S B,et al. Determination of organicrich shale pore features by mercury injection and gas adsorption methods. Acta Petrolei Sinica,2012,33(3):419-427.
[8] 中国国家标准化管理委员会. GB/T 21650.2-2008压汞法和气体吸附法测定固体材料孔径分布和孔隙度第2部分:气体吸附法分析介孔和大孔.北京:中国标准出版社,2008. Standardization Management Committee of the People's Republic of China. GB/T 21650.2-2008 Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption Part 2:Analysis of mesopores and macropores by gas adsorption. Beijing:Standards Press of China,2008.
[9] BUSTIN R M,BUSTIN A M M,CUI A,et al. Impact of shale properties on pore structure and storage characteristics. SPE 119892,2008.
[10] 姚艳斌,刘大锰,蔡益栋,等.基于NMR和X-CT的煤的孔裂隙精细定量表征.中国科学D辑:地球科学,2010,53(6):67-75. YAO Y B,LIU D M,CAI Y D,et al. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography. Science in China Series D:Earth Sciences,2010,53(6):67-75.
[11] 周龙刚,吴财芳.黔西比德-三塘盆地主采煤层孔隙特征.煤炭学报,2012,37(11):1878-1884. ZHOU L G,WU C F. Pore characteristics of the main coal seams in Bide-Santang Basin in western Guizhou Province. Journal of China Coal Society,2012,37(11):1878-1884.
[12] 蔺亚兵,贾雪梅,马东民.基于液氮吸附法对煤的孔隙特征研究与应.煤炭科学技术,2016,44(3):135-140. LIN Y B,JIA X M,MA D M. Study and application of coal pore features based on liquid nitrogen adsorption method. Coal Science and Technology,2016,44(3):135-140.
[13] YAO Y B,LIU D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals. Fuel,2012,95:152-158.
[14] 谢松彬,姚艳斌,陈基瑜,等.煤储层微小孔孔隙结构的低场核磁共振研究.煤炭学报,2015,40(增刊1):170-176. XIE S B,YAO Y B,CHEN J Y,et al. Research of micropore structure in coal reservoir using low-field NMR. Journal of China Coal Society,2015,40(Suppl 1):170-176.
[15] 徐晓萌,马红星,田建伟,等.基于核磁共振技术的煤体微观孔隙结构研究.煤矿安全,2017,48(2):1-4. XU X M,MA H X,TIAN J W,et al. Study on microscopic pore structures of coal based on nuclear magnetic resonance technology. Safety in Coal Mines,2017,48(2):1-4.
[16] 王凯,乔鹏,王壮森,等.基于二氧化碳和液氮吸附,高压压汞和低场核磁共振的煤岩多尺度孔径表征.中国矿业,2017,26(4):146-152. WANG K,QIAO P,WANG Z S,et al. Multiple scale pore size characterization of coal based on carbon dioxide and liquid nitrogen adsorption,high-pressure mercury intrusion and low field nuclear magnetic resonance. China Mining Magazine,2017,26(4):146-152.
[17] 李阳,张玉贵,张浪,等.基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征.煤炭学报,2019,44(4):1188-1196. LI Y,ZHANG Y G,ZHANG L,et al. Characterization on pore structure of tectonic coals based on the method of mercury intrusion,carbon dioxide adsorption and nitrogen adsorption. Journal of China Coal Society,2019,44(4):1188-1196.
[18] 中国国家标准化管理委员会.GB/T 212-2008煤的工业分析方法.北京:中国标准出版社,2008. Standardization Management Committee of the People's Republic of China. GB/T 212-2008 Proximate analysis of coal. Beijing:Standards Press of China,2008.
[19] 中国国家标准化管理委员会. GB/T 8899-2013煤的显微组分组和矿物测定方法.北京:中国标准出版社,2013. Standardization Management Committee of the People's Republic of China. GB/T 8899-2013 Determination of maceral group composition and minerals in coal. Beijing:Standards Press of China,2013.
[20] 中国国家标准化管理委员会. GB/T 6948-2008煤的镜质体反射率显微镜测定方法.北京:中国标准出版社,2008. Standardization Management Committee of the People's Republic of China. GB/T 6948-2008 Standardization Administration of the People's Republic of China. Method of determining microscopically the reflectance of vitrinite in coal. Beijing:Standards Press of China,2008.
[21] 焦堃,姚素平,吴浩,等.页岩气储层孔隙系统表征方法研究进展.高校地质学报,2014,20(1):151-161. JIAO K,YAO S P,WU H,et al. Advances in characterization of pore system of gas shales. Geological Journal of China Universities,2014,20(1):151-161.
[22] 国家能源局. SY/T 6490-2014岩样核磁共振参数实验室测量规范.北京:石油工业出版社,2014. National Energy Administration. SY/T 6490-2014 Specification for measurement of rock NMR parameter in laboratory. Beijing:Petroleum Industry Press,2014.
[23] WASHBURN E W. Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences of the United States of America, 1921,7(4):115-116.
[24] RITTER H L,DRAKE L C. Pore-size distribution in porous materials. I. Pressure porosimeter and determination of complete macro pore size distributions. Industrial and Engineering Chemistry,Analytical Edition,1945,17(12):782-786.
[25] ROOTARE H M,PRENZLOW C F. Surface areas from mercury porosimeter measurements. The Journal of Physical Chemistry, 1967,71(8):2733-2736.
[26] MATTHIAS T,KATSUMI K,ALEXANDER V N,et al. Physisorption of gases,with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry,2015,87(9/10):1051-1069.
[27] 陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究.煤炭学报,2001,26(5):552-556. CHEN P,TANG X Y. The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal. Journal of China Coal Society,2001,26(5):552-556.
[28] 赵俊龙,汤达祯,许浩,等.基于二氧化碳吸附实验的页岩微孔结构精细表征.大庆石油地质与开发,2015,34(5):156-161. ZHAO J L,TANG D Z,XU H,et al. Fine characterization of the shale micro-pore structures based on the carbon dioxide adsorption experiment. Petroleum Geology and Oilfield Development in Daqing,2015,34(5):156-161.
[29] 郑贵强,凌标灿,郑德庆,等.核磁共振实验技术在煤孔径分析中的应用.华北科技学院学报,2014,11(4):1-7. ZHENG G Q,LING B C,ZHENG D Q,et al. The application of nuclear magnetic resonance on analyzing aperture in coal. Journal of North China Institute of Science and Technology, 2014,11(4):1-7.
[30] 申辉林,朱伟峰,刘美杰.核磁共振录井T2谱截止值确定方法及其适应性研究.录井工程,2010,21(2):39-42. SHEN H L,ZHU W F,LIU M J. The method of determining T2 cutoff value in NMR logging and study on its applicability. Mudlogging Engineering,2010,21(2):39-42.
[31] QIN L,ZHAI C,LIU S,et al. Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw-a nuclear magnetic resonance investigation. Fuel,2017,194:102-114.
[32] 朱卫华,印友法,蒋林华,等.硅粉水泥石中微孔孔径分布及其对强度的影响.建筑材料学报,2004,7(1):14-18. ZHU W H,YIN Y F,JIANG L H,et al. Study of micro pore size distribution and its effect on the strength of silica fume cement paste. Journal of Building Materials,2004,7(1):14-18.
[33] 何雨丹,毛志强,肖立志,等.核磁共振T2分布评价岩石孔径分布的改进方法.地球物理学报,2005,48(2):373-378. HE Y D,MAO Z Q,XIAO L Z,et al. An improved method of using NMR T2 distribution to evaluate pore size distribution. Chinese Journal of Geophysics,2005,48(2):373-378.
[34] YUAN Y,REZAEE R. Comparative porosity and pore structure assessment in shales:Measurement techniques,influencing factors and implications for reservoir characterization. Energies, 2019,12(11):2094-2108.
[35] 胡彪,程远平,王亮.原生结构煤与构造煤孔隙结构与瓦斯扩散特性研究.煤炭科学技术,2018,46(3):103-107. HU B,CHENG Y P,WANG L. Study on porous structure and gas diffusion characteristics of primary structure coal and tectonic coal. Coal Science and Technology,2018,46(3):103-107.
[36] FU H,WANG X,ZHANG L,et al. Investigation of the factors that control the development of pore structure in lacustrine shale:a case study of block X in the Ordos Basin,China. Journal of Natural Gas Science and Engineering,2015,26:1422-1432.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[3] 苟红光, 林潼, 房强, 张华, 李山, 程祎, 尤帆. 吐哈盆地胜北洼陷中下侏罗统水西沟群天文旋回地层划分[J]. 岩性油气藏, 2024, 36(6): 89-97.
[4] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[5] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[6] 张培军, 谢明贤, 罗敏, 张良杰, 陈仁金, 张文起, 乐幸福, 雷明. 巨厚膏盐岩形变机制解析及其对油气成藏的影响——以阿姆河右岸东部阿盖雷地区侏罗系为例[J]. 岩性油气藏, 2024, 36(6): 36-44.
[7] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[8] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[9] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[10] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[11] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[12] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[13] 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87.
[14] 唐昱哲, 柴辉, 王红军, 张良杰, 陈鹏羽, 张文起, 蒋凌志, 潘兴明. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023, 35(6): 147-158.
[15] 赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .