岩性油气藏 ›› 2020, Vol. 32 ›› Issue (4): 81–88.doi: 10.12108/yxyqc.20200408

• 油气地质 • 上一篇    下一篇

北部湾盆地稠油地球化学特征及成因分析

金秋月1, 杨希冰1, 胡林1, 卢梅2   

  1. 1. 中海石油(中国)有限公司湛江分公司, 广东 湛江 524057;
    2. 中海油能源发展股份有限公司湛江实验中心, 广东 湛江 524057
  • 收稿日期:2019-11-27 修回日期:2020-02-18 出版日期:2020-08-01 发布日期:2020-06-16
  • 作者简介:金秋月(1988-),男,硕士,工程师,主要从事石油地质与油气成藏方面的研究工作。地址:(524057)广东省湛江市坡头区南油一区。Email:jinqiuyue2007@163.com。
  • 基金资助:
    国家科技重大专项“南海西部凹陷比较性研究与有利勘探方向预测”(编号:2016ZX05024002-009)和“南海西部海域低渗油藏勘探开发关键技术”(编号:2016ZX05024-006)联合资助

Geochemical characteristics and genesis of heavy oil in Beibuwan Basin

JIN Qiuyue1, YANG Xibing1, HU Lin1, LU Mei2   

  1. 1. Zhanjiang Branch, CNOOC Limited, Zhanjiang 524057, Guangdong, China;
    2. Zhanjiang Experiment Center, CNOOC Energy Technology & Services Limited, Zhanjiang 524057, Guangdong, China
  • Received:2019-11-27 Revised:2020-02-18 Online:2020-08-01 Published:2020-06-16

摘要: 北部湾盆地涠西南凹陷、乌石凹陷已发现多个稠油油田。为研究稠油特征和成因,开展了稠油油藏原油物性、组分、饱和烃特征、生物标志物、油气来源和盆地模拟分析。结果表明:(1)北部湾盆地稠油主要分布在凸起、斜坡带和近洼带,呈高密度、高黏度特征。(2)北部湾盆地存在3类稠油,第一类为凹陷中央流二段下部烃源岩生成的原油运移至圈闭成藏,遭后期抬升剥蚀,埋深小于2 000 m,上覆盖层薄导致油藏遭受生物降解,此类原油成熟度高,C30-4-甲基甾烷含量高,组分遭受不同程度的破坏,饱和烃和芳烃成分有序缺失;第二类稠油主要分布在近洼带,为本地低热演化油页岩、页岩生成的原油,其成熟度低,Ts/Tm值较低,C30-4-甲基甾烷含量低,在近洼就近成藏,埋深处于生烃门限附近,为早期原生稠油;第三类稠油主要分布在斜坡带,主要为深洼流二段下部烃源岩生成的成熟原油和本地流二段上部烃源岩生成的成熟度较低的稠油混合而成,同时受运移、扩散、吸附等因素的影响,原油变稠,C30-4-甲基甾烷含量中等,此类油藏埋深大于3 000 m,是未受到生物降解的混合型稠油。该研究成果对北部湾盆地优化勘探开发部署、指导油区勘探具有重要意义。

关键词: 稠油, 地球化学, 成因, 北部湾盆地

Abstract: Several heavy oil fields have been found in Weixinan Sag and Wushi Sag of Beibuwan Basin. In order to study the characteristics and genesis of heavy oil,the physical properties, components, saturated hydrocarbon characteristics, biomarkers, oil and gas source and basin simulation analysis were carried out. The results show that:(1)The heavy oil in Beibuwan Basin is mainly distributed in uplift, slope zone and near depression zone, with high density and high viscosity.(2)There are three types of heavy oil in Beibuwan Basin. The first type is the crude oil generated by the source rocks in the lower part of the second member of Liushagang Formation in the center of the sag and transported to the trap for reservoir formation.Due to later uplift and denudation, the burial depth is less than 2 000 m. The thin overburden causes the reservoir to be biodegraded. This kind of crude oil has high maturity and high content of c30-4-methylsterane. The components were destroyed to different degrees and the saturated hydrocarbon and aromatic hydrocarbon components were lost in order. The second type of heavy oil is mainly distributed in the near-depression zone, which is the crude oil generated from the local lowthermal evolution oil shale and shale. It is characterized by low maturity, low Ts/Tm value and low contentof C30-4-methylsterane. The reservoir is accumulated in the near depression and buried in the near hydrocarbon generation threshold,and it is the early primary heavy oil. The third type ofheavy oil is mainly distributed in the slope belt, it is mainly composed of the mature crude oil generated from the lower source rock of the second member of Liushagang Formation in the deep depression and the low mature heavy oil generated from the upper source rock in the local area. Meanwhile,influenced by migration, diffusion, adsorption and other factors,the crude oil thickens. The content of C30-4-methylsterane is medium,and the buried depth of reservoir is more than 3 000 m. The mixed heavy oil is not biodegraded. The research results are of great significance for optimizing exploration and development deployment and guiding oil exploration in Beibuwan Basin.

Key words: heavy oil, geochemistry, genesis, Beibuwan Basin

中图分类号: 

  • TE122.1
[1] 黄保家, 黄合庭, 吴国瑄, 等.北部湾盆地始新统湖相富有机质页岩特征及成因机制.石油学报, 2012, 33(1):25-31. HUANG B J, HUANG H T, WU G X, et al.Geochemical characteristics and formation mechanism of Eocene lacustrine organicrich shales in the Beibuwan Basin. Acta Petrolei Sinica, 2012, 33(1):25-31.
[2] 潘贤庄.北部湾盆原油中的生物标志物及其地质-地球化学意义.沉积学报, 1997, 15(2):202-206. PAN X Z. Biomarkers and its geological-geochemical significance in crude oils from Beibu Gulf Basin. Acta Sedimentologica Sinica, 1997, 15(2):202-206.
[3] 包建平, 刘玉瑞, 朱翠山, 等.北部湾盆地迈陈凹陷徐闻X1井油气地球化学特征.天然气地球科学, 2006, 17(3):300-304. BAO J P, LIU Y R, ZHU C S, et al. Geochemical characteristics and genetic types of crude oils. Oil & Gas Geology, 2006, 17(3):300-304.
[4] CONNAN J. Biodegradation of crude oils in reservoirs//BROOKS J, WELTE D H. Advances in petroleum geochemistry. London:Academic Press, 1984:299-335.
[5] CAROLYN M, AITKEN D M, JONES S R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 2004, 431:291-294.
[6] LIU K, EADINGTON P. Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history. Orgnic Geochemistry, 2005, 36:1023-1036.
[7] SNOWDON L R, POWELL T G. Immature oils and condensatemodification of hydrocarbon generation model for terrestrial organic matter. AAPG Bulletin, 1982, 66(6):775-788.
[8] PETERSEN H I, ANDSBJERG J, BOJESEN-KOEGOED J A, et al. Coal generated oil source rock evaluation and petroleum geochemistry of the Lulita Oilfield,Danish North Sea. Journal of Petroleum Geology, 2000, 23(1):55-90.
[9] RADKE M, WELTE D H. The methyphenanthrene index(MPI):a maturity parameter based on aromatic hydrocarbons//BJORY M. Advance in Organic Geochemistry. Chichester:John Wiley and Sons Incorporation, 1983:504-512.
[10] SEIFERT W K, MOLDOWAN J M. Paleoreconstruction by biological markers. Geochimica et Cosmochimica Acta, 1981, 45:783-794.
[11] FU J M, SHENG GY, XU J Y, et al. Application of biological markers in the assessment of paleoenvironment of Chinese nonmarine sediments. Organic Geochemistry, 1990, 16:769-779.
[12] PETERS K E, MOLDOWAN J M. The biomarker guide. New York:Prentice Hall, 1993:252-265.
[13] 王屿涛. 准噶尔盆地西北缘稠油生物降解特征. 沉积学报, 1994, 12(1):81-88. WANG Y T. Characteristics of heavy oil biodegradation in the northwestern margin of Junggar Basin. Acta Sedimentologica Sinica, 1994, 12(1):81-88.
[14] VOLKMAN J K, ALEXANDER R, KAGI R I, et al. Demethylated hopanes in crude oils and their applications in petroleum geochemistry. Geochimica et Cosmochimica Acta, 1983(47):785-794.
[15] 李敏, 田辉, 肖贤明, 等.塔河油田稠油中25-降苯并藿烷的检出及其意义.地球化学, 2014, 43(5):453-459. LI M, TIAN H, XIAO X M, et al. Identification of 25-norbenzohopanes in Tahe Oilfield and its geological significance. Geochimica, 2014, 43(5):453-459.
[16] 王铁冠, 钟宁宁, 侯读杰, 等.中国低熟油的几种成因机制.沉积学报, 1997, 15(2):75-83. WANG T G, ZHONG N N, HOU D J, et al. Several genetic mechanisms of immature crude oils in China. Acta Sedimentologica Sinica, 1997, 15(2):75-83.
[17] BENNETT B, FUSTIC M, FARRIMOND P, et al. 25-Norhopanes:Formation during biodegradation of petroleum in the subsurface. Orgnic Geochemistry, 2006, 37(7):787-797.
[18] 包建平, 梅博文.25-降藿烷系列的"异常"分布及其成因.沉积学报, 1997, 15(2):179-183. BAO J P, MEI B W. The abnormal distribution and the origin of 25-norhopane Series. Acta Sedimentologica Sinica, 1997, 15(2):179-183.
[19] 杜宏宇, 王铁冠, 胡剑梨, 等.三塘湖盆地上二叠统烃源岩中的25-降藿烷系列与微生物改造作用. 石油勘探与开发, 2004, 31(1):42-44. DU H Y, WANG T G, HU J L, et al. 25-norhopane in the source rock of Santanghu Basin and the function of microbe degradation. Petroleum Exploration and Development, 2004, 31(1):42-44.
[20] 宋宁, 王铁冠, 李美俊.江苏金湖凹陷古近系奇碳优势和偶碳优势共存的正构烷烃.沉积学报, 2007, 25(2):307-313. SONG N, WANG T G, LI M J. An n-alkane coexisting even and odd carbon number predominace of Paleogene in Jinhu Sag. Acta Sedimentologica Sinica, 2007, 25(2):307-313.
[21] 马安来, 张水昌, 张大江, 等.生物降解原油地球化学研究新进展.地球科学进展, 2005, 20(4):449-454. MA A L, ZHANG S C, ZHANG D J, et al. The advances in the geochemistry of the biodegraded oil. Advances in Earth Science, 2005, 20(4):449-454.
[22] 邱桂强, 李素梅, 庞雄奇, 等.东营凹陷北部陡坡带稠油地球化学特征与成因.地质学报, 2004, 78(6):854-862. QIU G Q, LI S M, PANG X Q, et al. Characteristics and genetic mechanisms of heavy oils on the north steep slope of the Dongying Depression in the Bohai Bay Basin, East China. Acta Geologica Sinica, 2004, 78(6):854-862.
[23] 王培荣.生物标志化合物质量色谱图集.北京:石油工业出版社, 1993:50-80. WANG P R. Biomarker mass chromatography atlas. Beijing:Petroleum Industry Press, 1993:50-80.
[24] 包建平. 未降解原油和生油岩中的25-降藿烷系列. 科学通报, 1996, 41(20):1875-1878. BAO J P. 25-norhopanes in nondegradation of crude oil and source rocks. Chinese Science Bulletin, 1996, 41(20):1875-1878.
[25] 文志刚, 王登, 宋换新, 等. Bongor盆地北部斜坡带稠油地球化学特征及成因.石油天然气学报, 2013, 35(4):17-21. WEN Z G, WANG D, SONG H X, et al. Geochemical characteristics and origin of heavy oil in the northern slope of Bongor Basin. Journal of Oil and Gas Technology, 2013, 35(4):17-21.
[26] 徐冠军, 张大江, 王培荣.用沥青质中生物标志化合物判识生物降解油的油源.科学通报, 2003, 48(4):400-404. XU G J, ZHANG D J, WANG P R. Identification of oil source with biological markers of biodegradable oil in asphaltene. Chinese Science Bulletin, 2003, 48(4):400-404.
[27] 黄第藩, 李晋超, 张大江, 等.柴达木盆地第三系原油的熟化序列及其在石油资源预测中的重要意义.石油学报, 1989, 10(3):1-11. HUANG D F, LI J C, ZHANG D J, et al. Maturation sequence of tertiary crude oil in Qaidam Basin and its significance in petroleum resource prediction. Acta Petrolei Sinica, 1989, 10(3):1-11.
[1] 陈亚军, 荆文波, 宋小勇, 何伯斌, 伍宏美, 王睿, 解士建, 宋凯辉, 马强. 三塘湖盆地马朗凹陷上石炭统沉积岩层地球化学特征及古环境意义[J]. 岩性油气藏, 2021, 33(4): 63-75.
[2] 李祖兵, 崔俊峰, 宋舜尧, 成亚斌, 卢异, 陈岑. 黄骅坳陷北大港潜山中生界碎屑岩储层特征及成因机理[J]. 岩性油气藏, 2021, 33(2): 81-92.
[3] 覃阳亮, 何幼斌, 蔡俊, 李华, 张灿, 刘建宁. 东非海岸Davie构造带的构造演化特征及其成因机制[J]. 岩性油气藏, 2021, 33(2): 104-115.
[4] 徐宇轩, 代宗仰, 胡晓东, 徐志明, 李丹. 川东北沙溪庙组天然气地球化学特征及地质意义——以五宝场地区为例[J]. 岩性油气藏, 2021, 33(1): 209-219.
[5] 蒋中发, 丁修建, 王忠泉, 赵辛楣. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境[J]. 岩性油气藏, 2020, 32(6): 109-119.
[6] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[7] 杜旭林, 戴宗, 辛晶, 李海龙, 曹仁义, 罗东红. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[8] 黄彦杰, 白玉彬, 孙兵华, 黄礼, 黄昌武. 鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J]. 岩性油气藏, 2020, 32(1): 66-75.
[9] 金秋月. 北部湾盆地涠西南凹陷东南斜坡原油成因类型及成藏特征[J]. 岩性油气藏, 2020, 32(1): 11-18.
[10] 叶亚培, 唐书恒, 郗兆栋, 张耀选. 黔北地区牛蹄塘组页岩矿物组成特征与脆性评价[J]. 岩性油气藏, 2019, 31(4): 62-71.
[11] 张吉磊, 罗宪波, 张运来, 何逸凡, 周焱斌. 提高稠油底水油藏转注井注水效率研究[J]. 岩性油气藏, 2019, 31(4): 141-148.
[12] 仇秀梅, 刘亚东, 董学林. 鄂西建始地区大隆组页岩有机地球化学特征[J]. 岩性油气藏, 2019, 31(2): 96-104.
[13] 罗群, 吴安彬, 王井伶, 罗家国, 蒋恕. 中国北方页岩气成因类型、成气模式与勘探方向[J]. 岩性油气藏, 2019, 31(1): 1-11.
[14] 刘雁婷. 川东北地区长兴组—飞仙关组储层特征[J]. 岩性油气藏, 2019, 31(1): 78-86.
[15] 孙玉景, 周立发. 鄂尔多斯盆地马五段膏盐岩沉积对天然气成藏的影响[J]. 岩性油气藏, 2018, 30(6): 67-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .