岩性油气藏 ›› 2020, Vol. 32 ›› Issue (4): 81–88.doi: 10.12108/yxyqc.20200408

• 油气地质 • 上一篇    下一篇

北部湾盆地稠油地球化学特征及成因分析

金秋月1, 杨希冰1, 胡林1, 卢梅2   

  1. 1. 中海石油(中国)有限公司湛江分公司, 广东 湛江 524057;
    2. 中海油能源发展股份有限公司湛江实验中心, 广东 湛江 524057
  • 收稿日期:2019-11-27 修回日期:2020-02-18 出版日期:2020-08-01 发布日期:2020-06-16
  • 第一作者:金秋月(1988-),男,硕士,工程师,主要从事石油地质与油气成藏方面的研究工作。地址:(524057)广东省湛江市坡头区南油一区。Email:jinqiuyue2007@163.com。
  • 基金资助:
    国家科技重大专项“南海西部凹陷比较性研究与有利勘探方向预测”(编号:2016ZX05024002-009)和“南海西部海域低渗油藏勘探开发关键技术”(编号:2016ZX05024-006)联合资助

Geochemical characteristics and genesis of heavy oil in Beibuwan Basin

JIN Qiuyue1, YANG Xibing1, HU Lin1, LU Mei2   

  1. 1. Zhanjiang Branch, CNOOC Limited, Zhanjiang 524057, Guangdong, China;
    2. Zhanjiang Experiment Center, CNOOC Energy Technology & Services Limited, Zhanjiang 524057, Guangdong, China
  • Received:2019-11-27 Revised:2020-02-18 Online:2020-08-01 Published:2020-06-16

摘要: 北部湾盆地涠西南凹陷、乌石凹陷已发现多个稠油油田。为研究稠油特征和成因,开展了稠油油藏原油物性、组分、饱和烃特征、生物标志物、油气来源和盆地模拟分析。结果表明:(1)北部湾盆地稠油主要分布在凸起、斜坡带和近洼带,呈高密度、高黏度特征。(2)北部湾盆地存在3类稠油,第一类为凹陷中央流二段下部烃源岩生成的原油运移至圈闭成藏,遭后期抬升剥蚀,埋深小于2 000 m,上覆盖层薄导致油藏遭受生物降解,此类原油成熟度高,C30-4-甲基甾烷含量高,组分遭受不同程度的破坏,饱和烃和芳烃成分有序缺失;第二类稠油主要分布在近洼带,为本地低热演化油页岩、页岩生成的原油,其成熟度低,Ts/Tm值较低,C30-4-甲基甾烷含量低,在近洼就近成藏,埋深处于生烃门限附近,为早期原生稠油;第三类稠油主要分布在斜坡带,主要为深洼流二段下部烃源岩生成的成熟原油和本地流二段上部烃源岩生成的成熟度较低的稠油混合而成,同时受运移、扩散、吸附等因素的影响,原油变稠,C30-4-甲基甾烷含量中等,此类油藏埋深大于3 000 m,是未受到生物降解的混合型稠油。该研究成果对北部湾盆地优化勘探开发部署、指导油区勘探具有重要意义。

关键词: 稠油, 地球化学, 成因, 北部湾盆地

Abstract: Several heavy oil fields have been found in Weixinan Sag and Wushi Sag of Beibuwan Basin. In order to study the characteristics and genesis of heavy oil,the physical properties, components, saturated hydrocarbon characteristics, biomarkers, oil and gas source and basin simulation analysis were carried out. The results show that:(1)The heavy oil in Beibuwan Basin is mainly distributed in uplift, slope zone and near depression zone, with high density and high viscosity.(2)There are three types of heavy oil in Beibuwan Basin. The first type is the crude oil generated by the source rocks in the lower part of the second member of Liushagang Formation in the center of the sag and transported to the trap for reservoir formation.Due to later uplift and denudation, the burial depth is less than 2 000 m. The thin overburden causes the reservoir to be biodegraded. This kind of crude oil has high maturity and high content of c30-4-methylsterane. The components were destroyed to different degrees and the saturated hydrocarbon and aromatic hydrocarbon components were lost in order. The second type of heavy oil is mainly distributed in the near-depression zone, which is the crude oil generated from the local lowthermal evolution oil shale and shale. It is characterized by low maturity, low Ts/Tm value and low contentof C30-4-methylsterane. The reservoir is accumulated in the near depression and buried in the near hydrocarbon generation threshold,and it is the early primary heavy oil. The third type ofheavy oil is mainly distributed in the slope belt, it is mainly composed of the mature crude oil generated from the lower source rock of the second member of Liushagang Formation in the deep depression and the low mature heavy oil generated from the upper source rock in the local area. Meanwhile,influenced by migration, diffusion, adsorption and other factors,the crude oil thickens. The content of C30-4-methylsterane is medium,and the buried depth of reservoir is more than 3 000 m. The mixed heavy oil is not biodegraded. The research results are of great significance for optimizing exploration and development deployment and guiding oil exploration in Beibuwan Basin.

Key words: heavy oil, geochemistry, genesis, Beibuwan Basin

中图分类号: 

  • TE122.1
[1] 黄保家, 黄合庭, 吴国瑄, 等.北部湾盆地始新统湖相富有机质页岩特征及成因机制.石油学报, 2012, 33(1):25-31. HUANG B J, HUANG H T, WU G X, et al.Geochemical characteristics and formation mechanism of Eocene lacustrine organicrich shales in the Beibuwan Basin. Acta Petrolei Sinica, 2012, 33(1):25-31.
[2] 潘贤庄.北部湾盆原油中的生物标志物及其地质-地球化学意义.沉积学报, 1997, 15(2):202-206. PAN X Z. Biomarkers and its geological-geochemical significance in crude oils from Beibu Gulf Basin. Acta Sedimentologica Sinica, 1997, 15(2):202-206.
[3] 包建平, 刘玉瑞, 朱翠山, 等.北部湾盆地迈陈凹陷徐闻X1井油气地球化学特征.天然气地球科学, 2006, 17(3):300-304. BAO J P, LIU Y R, ZHU C S, et al. Geochemical characteristics and genetic types of crude oils. Oil & Gas Geology, 2006, 17(3):300-304.
[4] CONNAN J. Biodegradation of crude oils in reservoirs//BROOKS J, WELTE D H. Advances in petroleum geochemistry. London:Academic Press, 1984:299-335.
[5] CAROLYN M, AITKEN D M, JONES S R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 2004, 431:291-294.
[6] LIU K, EADINGTON P. Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history. Orgnic Geochemistry, 2005, 36:1023-1036.
[7] SNOWDON L R, POWELL T G. Immature oils and condensatemodification of hydrocarbon generation model for terrestrial organic matter. AAPG Bulletin, 1982, 66(6):775-788.
[8] PETERSEN H I, ANDSBJERG J, BOJESEN-KOEGOED J A, et al. Coal generated oil source rock evaluation and petroleum geochemistry of the Lulita Oilfield,Danish North Sea. Journal of Petroleum Geology, 2000, 23(1):55-90.
[9] RADKE M, WELTE D H. The methyphenanthrene index(MPI):a maturity parameter based on aromatic hydrocarbons//BJORY M. Advance in Organic Geochemistry. Chichester:John Wiley and Sons Incorporation, 1983:504-512.
[10] SEIFERT W K, MOLDOWAN J M. Paleoreconstruction by biological markers. Geochimica et Cosmochimica Acta, 1981, 45:783-794.
[11] FU J M, SHENG GY, XU J Y, et al. Application of biological markers in the assessment of paleoenvironment of Chinese nonmarine sediments. Organic Geochemistry, 1990, 16:769-779.
[12] PETERS K E, MOLDOWAN J M. The biomarker guide. New York:Prentice Hall, 1993:252-265.
[13] 王屿涛. 准噶尔盆地西北缘稠油生物降解特征. 沉积学报, 1994, 12(1):81-88. WANG Y T. Characteristics of heavy oil biodegradation in the northwestern margin of Junggar Basin. Acta Sedimentologica Sinica, 1994, 12(1):81-88.
[14] VOLKMAN J K, ALEXANDER R, KAGI R I, et al. Demethylated hopanes in crude oils and their applications in petroleum geochemistry. Geochimica et Cosmochimica Acta, 1983(47):785-794.
[15] 李敏, 田辉, 肖贤明, 等.塔河油田稠油中25-降苯并藿烷的检出及其意义.地球化学, 2014, 43(5):453-459. LI M, TIAN H, XIAO X M, et al. Identification of 25-norbenzohopanes in Tahe Oilfield and its geological significance. Geochimica, 2014, 43(5):453-459.
[16] 王铁冠, 钟宁宁, 侯读杰, 等.中国低熟油的几种成因机制.沉积学报, 1997, 15(2):75-83. WANG T G, ZHONG N N, HOU D J, et al. Several genetic mechanisms of immature crude oils in China. Acta Sedimentologica Sinica, 1997, 15(2):75-83.
[17] BENNETT B, FUSTIC M, FARRIMOND P, et al. 25-Norhopanes:Formation during biodegradation of petroleum in the subsurface. Orgnic Geochemistry, 2006, 37(7):787-797.
[18] 包建平, 梅博文.25-降藿烷系列的"异常"分布及其成因.沉积学报, 1997, 15(2):179-183. BAO J P, MEI B W. The abnormal distribution and the origin of 25-norhopane Series. Acta Sedimentologica Sinica, 1997, 15(2):179-183.
[19] 杜宏宇, 王铁冠, 胡剑梨, 等.三塘湖盆地上二叠统烃源岩中的25-降藿烷系列与微生物改造作用. 石油勘探与开发, 2004, 31(1):42-44. DU H Y, WANG T G, HU J L, et al. 25-norhopane in the source rock of Santanghu Basin and the function of microbe degradation. Petroleum Exploration and Development, 2004, 31(1):42-44.
[20] 宋宁, 王铁冠, 李美俊.江苏金湖凹陷古近系奇碳优势和偶碳优势共存的正构烷烃.沉积学报, 2007, 25(2):307-313. SONG N, WANG T G, LI M J. An n-alkane coexisting even and odd carbon number predominace of Paleogene in Jinhu Sag. Acta Sedimentologica Sinica, 2007, 25(2):307-313.
[21] 马安来, 张水昌, 张大江, 等.生物降解原油地球化学研究新进展.地球科学进展, 2005, 20(4):449-454. MA A L, ZHANG S C, ZHANG D J, et al. The advances in the geochemistry of the biodegraded oil. Advances in Earth Science, 2005, 20(4):449-454.
[22] 邱桂强, 李素梅, 庞雄奇, 等.东营凹陷北部陡坡带稠油地球化学特征与成因.地质学报, 2004, 78(6):854-862. QIU G Q, LI S M, PANG X Q, et al. Characteristics and genetic mechanisms of heavy oils on the north steep slope of the Dongying Depression in the Bohai Bay Basin, East China. Acta Geologica Sinica, 2004, 78(6):854-862.
[23] 王培荣.生物标志化合物质量色谱图集.北京:石油工业出版社, 1993:50-80. WANG P R. Biomarker mass chromatography atlas. Beijing:Petroleum Industry Press, 1993:50-80.
[24] 包建平. 未降解原油和生油岩中的25-降藿烷系列. 科学通报, 1996, 41(20):1875-1878. BAO J P. 25-norhopanes in nondegradation of crude oil and source rocks. Chinese Science Bulletin, 1996, 41(20):1875-1878.
[25] 文志刚, 王登, 宋换新, 等. Bongor盆地北部斜坡带稠油地球化学特征及成因.石油天然气学报, 2013, 35(4):17-21. WEN Z G, WANG D, SONG H X, et al. Geochemical characteristics and origin of heavy oil in the northern slope of Bongor Basin. Journal of Oil and Gas Technology, 2013, 35(4):17-21.
[26] 徐冠军, 张大江, 王培荣.用沥青质中生物标志化合物判识生物降解油的油源.科学通报, 2003, 48(4):400-404. XU G J, ZHANG D J, WANG P R. Identification of oil source with biological markers of biodegradable oil in asphaltene. Chinese Science Bulletin, 2003, 48(4):400-404.
[27] 黄第藩, 李晋超, 张大江, 等.柴达木盆地第三系原油的熟化序列及其在石油资源预测中的重要意义.石油学报, 1989, 10(3):1-11. HUANG D F, LI J C, ZHANG D J, et al. Maturation sequence of tertiary crude oil in Qaidam Basin and its significance in petroleum resource prediction. Acta Petrolei Sinica, 1989, 10(3):1-11.
[1] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[2] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[3] 窦立荣, 刘化清, 李博, 齐雯, 孙东, 尹路, 韩双彪. 全球天然氢气勘探开发利用进展及中国的勘探前景[J]. 岩性油气藏, 2024, 36(2): 1-14.
[4] 李二庭, 米巨磊, 张宇, 潘越扬, 迪丽达尔·肉孜, 王海静, 高秀伟. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征[J]. 岩性油气藏, 2024, 36(1): 88-97.
[5] 杨兆臣, 卢迎波, 杨果, 黄纯, 弋大琳, 贾嵩, 吴永彬, 王桂庆. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏, 2024, 36(1): 178-184.
[6] 郭谨豪, 胡国艺, 何坤, 米敬奎, 田连杰, 贺飞, 郭楚媛, 卢梦蝶. 川北地区二叠系大隆组烃源岩地球化学特征及沉积环境[J]. 岩性油气藏, 2023, 35(5): 139-152.
[7] 赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168.
[8] 梁小聪, 牛杏, 胡明毅, 黎洋, 胡忠贵, 蔡全升. 湘鄂西下寒武统牛蹄塘组黑色页岩发育特征及沉积环境[J]. 岩性油气藏, 2023, 35(4): 102-114.
[9] 满晓, 胡德胜, 吴洁, 宫立园, 柳智萱, 姜应德, 赵晔. 北部湾盆地涠西南凹陷始新统流一段湖底扇发育特征及成藏模式[J]. 岩性油气藏, 2023, 35(4): 137-144.
[10] 薛楠, 邵晓州, 朱光有, 张文选, 齐亚林, 张晓磊, 欧阳思琪, 王淑敏. 鄂尔多斯盆地平凉北地区三叠系长7段烃源岩地球化学特征及形成环境[J]. 岩性油气藏, 2023, 35(3): 51-65.
[11] 薛罗, 史忠生, 马轮, 赵艳军, 岳世俊, 洪亮, 王磊, 雷明. 南苏丹Melut盆地北部地区中—新生界稠油成藏模式及勘探潜力[J]. 岩性油气藏, 2023, 35(3): 76-85.
[12] 邓美玲, 王宁, 李新琦, 陈容涛, 刘岩, 徐耀辉. 渤海莱州湾凹陷中部古近系沙三段烃源岩地球化学特征及沉积环境[J]. 岩性油气藏, 2023, 35(1): 49-62.
[13] 杨韬政, 刘成林, 田继先, 李培, 冉钰, 冯德浩, 李国雄, 吴育平. 柴达木盆地大风山凸起地层压力预测及成因分析[J]. 岩性油气藏, 2023, 35(1): 96-107.
[14] 文志刚, 罗雨舒, 刘江艳, 赵春雨, 李士祥, 田伟超, 樊云鹏, 高和婷. 陇东地区三叠系长7段页岩油储层孔隙结构特征及成因机制[J]. 岩性油气藏, 2022, 34(6): 47-59.
[15] 魏新, 唐建云, 宋红霞, 陈玉宝. 鄂尔多斯盆地甘泉地区上古生界烃源岩地球化学特征及生烃潜力[J]. 岩性油气藏, 2022, 34(6): 92-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .