岩性油气藏 ›› 2022, Vol. 34 ›› Issue (2): 45–53.doi: 10.12108/yxyqc.20220204

• 地质勘探 • 上一篇    下一篇

柴达木盆地西部地区古近系湖相碳酸盐岩储层特征

崔俊, 毛建英, 陈登钱, 施奇, 李雅楠, 夏晓敏   

  1. 中国石油青海油田公司 勘探开发研究院, 甘肃 敦煌 736202
  • 收稿日期:2021-06-25 修回日期:2021-08-18 出版日期:2022-04-01 发布日期:2022-03-14
  • 作者简介:崔俊(1974-),男,硕士,高级工程师,主要从事沉积储层方面的研究工作。地址:(736202)甘肃省敦煌市七里镇勘探开发研究院。Email:cuijunqh@petrochina.com.cn。
  • 基金资助:
    中国石油天然气股份有限公司重大科技专项“柴达木盆地建设高原大油气田勘探开发关键技术研究与应用”(编号:2016E-01)资助

Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin

CUI Jun, MAO Jianying, CHEN Dengqian, SHI Qi, LI Yanan, XIA Xiaomin   

  1. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China
  • Received:2021-06-25 Revised:2021-08-18 Online:2022-04-01 Published:2022-03-14

摘要: 柴达木盆地西部地区古近系下干柴沟组上段(E32)至上油砂山组(N22)广泛发育湖相碳酸盐岩。为研究其分布及储层发育特征,开展岩心观察、薄片鉴定、扫描电镜及X射线衍射分析等工作。结果表明:①研究区湖相碳酸盐岩具有岩石类型多、相变快、陆源碎屑发育、普遍白云石化等特点;主要岩石类型有块状碳酸盐岩、纹层状碳酸盐岩、藻灰岩、颗粒碳酸盐岩,其分布与沉积微相及古环境密切相关。②研究区块状碳酸盐岩储集空间以晶间孔为主,局部发育裂缝,纹层状碳酸盐岩顺层微裂缝发育,藻灰岩储集空间以藻格架孔为主,非均质性强,颗粒碳酸盐岩受胶结作用影响显著。③块状碳酸盐岩平均孔隙度为10.6%,平均基质渗透率为0.03 mD,排驱压力为10.0 MPa,平均孔喉半径为0.038 μm;纹层状碳酸盐岩平均孔隙度为7.4%,平均渗透率为0.76 mD,排驱压力为11.5 MPa,平均孔喉半径为0.071 μm;藻灰岩平均孔隙度为10.1%,平均渗透率为9.09 mD,排驱压力为3.2 MPa,平均孔喉半径为0.117 μm;颗粒碳酸盐岩平均孔隙度为7.1%,平均渗透率为0.01 mD,排驱压力为15.0 MPa,平均孔喉半径为0.026 μm。④尕斯地区古近系优质储层以藻灰岩为主,英西—干柴沟地区的碳酸盐岩发育裂缝系统,为高产“甜点”区;茫崖凹陷为勘探潜力区。该成果对柴达木盆地古近系湖相碳酸盐岩油气勘探具有借鉴作用。

关键词: 孔隙结构, 储层特征, 晶间孔, 白云石化, 湖相碳酸盐岩, 古近系, 柴达木盆地

Abstract: Lacustrine carbonate rocks are widely developed in the upper member of Xiaganchaigou Formation (E32) and upper Youshashan Formation(N22) of Paleogene in the western Qaidam Basin. In order to study its distribution and reservoir development characteristics, core observation, thin section identification, scanning electron microscope analysis and X-ray diffraction analysis were carried out. The results show that:(1) The lacustrine carbonate rocks in the study area have the characteristics of many rock types, rapid phase transformation, terrigenous clastic development and general dolomitization. The rocks are mainly composed of massive carbonate rocks, laminar carbonate rocks, algal limestones and granular carbonate rocks, which are closely related to sedimen-tary microfacies and paleoenvironment.(2) The massive carbonate reservoir space in the study area is mainly composed of intergranular pores, and fractures are locally developed. The bedding microfractures of laminar carbonate rocks are developed, the algal limestone reservoir space is mainly composed of algal framework pores with strong heterogeneity, and the granular carbonate rocks are significantly affected by cementation.(3) The average porosity of massive carbonate rocks is 10.6%, the average matrix permeability is 0.03 mD, the displacement pressure is 10.0 MPa, and the average pore throat radius is 0.038 μm. The average porosity of laminar carbonate rocks is 7.4%, the average permeability is 0.76 mD, the displacement pressure is 11.5 MPa, and the average pore throat radius is 0.071 μm. The average porosity of algal limestones is 10.1%, the average permeability is 9.09 mD, the displacement pressure is 3.2 MPa, and the average pore throat radius is 0.117μm. The average porosity of granular carbonate rocks is 7.1%, the average permeability is 0.01 mD, the displacement pressure is 15.0 MPa, and the average pore throat radius is 0.026 μm.(4) The Paleogene high-quality reservoirs in Gasi area are mainly algal limestones, the carbonate rocks in Yingxi-Ganchaigou area develop fracture system, which is a high-yield "sweet spot" area, and Mangya Sag is an exploration potential area. The research results can be used as a reference for oil and gas exploration of lacustrine carbonate rocks in Qaidam Basin.

Key words: pore structure, reservoir characteristics, intercrystalline pores, dolomitization, lacustrine carbonate rock, Paleogene, Qaidam Basin

中图分类号: 

  • TE122.2
[1] 倪新锋, 沈安江, 韦东晓, 等.碳酸盐岩沉积学研究热点与进展:AAPG百年纪念暨2017年会及展览综述[J].天然气地球科学, 2018, 29(5):729-742.NI Xinfeng, SHEN Anjiang, WEI Dongxiao, et al.Current hot topics and advances of carbonate sedimentology:AAPG 100 anniversary and 2017 annual meeting and exhibition[J].Natural Gas Geoscience, 2018, 29(5):729-742.
[2] 闫伟鹏, 杨涛, 李欣, 等.中国陆上湖相碳酸盐岩地质特征及勘探潜力[J].中国石油勘探, 2014, 19(4):11-17.YAN Weipeng, YANG Tao, LI Xin, et al.Geological characteristics and hydrocarbon exploration potential of lacustrine carbonate rock in China[J].China Petroleum Exploration, 2014, 19(4):11-17.
[3] 谢锦龙, 黄冲, 王晓星.中国碳酸盐岩油气藏探明储量分布特征[J].海相油气地质, 2009, 14(2):24-30.XIE Jinlong, HUANG Chong, WANG Xiaoxing.Distribution features of proved reserves of carbonate oil and gas pools in China[J].Marine Origin Petroleum Geology, 2009, 14(2):24-30.
[4] 杜江民, 龙鹏宇, 杨鹏, 等.中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J].地球科学进展, 2020, 35(1):52-69.DU Jiangmin, LONG Pengyu, YANG Peng, et al.Characteristics of carbonate reservoir and its forming conditions in continental lake basin of China[J].Advances in Earth Science, 2020, 35(1):52-69.
[5] 王义武, 蒋飞虎, 慕小水, 等.湖相碳酸盐岩成因及其石油地质意义:以东濮凹陷沙河街组四段为例[J].断块油气田, 2018, 25(5):568-572.WANG Yiwu, JIANG Feihu, MU Xiaoshui, et al.Origin of lacustrine carbonate rocks and its significance to petroleum geology:Taking fourth member of Shahejie Formation in Dongpu Sag as an example[J].Fault-Block Oil and Gas Field, 2018, 25(5):568-572.
[6] 李晓光, 刘兴周, 李金鹏, 等.辽河坳陷大民屯凹陷沙四段湖相页岩油综合评价及勘探实践[J].中国石油勘探, 2019, 24(5):636-648.LI Xiaoguang, LIU Xingzhou, LI Jinpeng, et al.Comprehensive evaluation and exploration practice of Sha 4 lacustrine shale oil in Damintun Sag, Liaohe Depression[J].China Petroleum Exploration, 2019, 24(5):636-648.
[7] 张锐锋, 陈柯童, 朱洁琼, 等.渤海湾盆地冀中坳陷束鹿凹陷中深层湖相碳酸盐岩致密储层天然气成藏条件与资源潜力[J].天然气地球科学, 2021, 32(5):623-632.ZHANG Ruifeng, CHEN Ketong, ZHU Jieqiong, et al.Tight gas reservoir forming condition and resource potential in the lacustrine carbonate in the middle-deep layer of Shulu Sag of Jizhong Depression, Bohai Bay Basin[J].Natural Gas Geoscience, 2021, 32(5):623-632.
[8] 蔚远江, 王红岩, 刘德勋, 等.陆相页岩油勘探"进源找油"探索与思考:以渤海湾盆地歧口凹陷沙一段为例[J].地球科学与环境学报, 2021, 43(1):117-134.WEI Yuanjiang, WANG Hongyan, LIU Dexun, et al.Probing and thinking on "exploring petroleum inside source kitchen" of continental shale oil exploration:A case study of the first member of Shahejie Formation in Qikou Sag, Bohai Bay Basin, China[J].Journal of Earth Sciences and Environment, 2021, 43(1):117-134.
[9] 李书琴, 印森林, 高阳, 等.准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J].天然气地球科学, 2020, 31(2):235-249.LI Shuqin, YIN Senlin, GAO Yang, et al.Study on sedimentary microfacies of mixed fine-grained rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J].Natural Gas Geoscience, 2020, 31(2):235-249.
[10] 李二庭, 王剑, 李际, 等.源储一体烃源岩精确评价:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J].石油实验地质, 2021, 43(2):335-342.LI Erting, WANG Jian, LI Ji, et al.Accurate evaluation of source rocks in source-reservoir integration:A case study of source rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J].Petroleum Geology&Experiment, 2021, 43(2):335-342.
[11] 张治恒, 田继军, 韩长城, 等.吉木萨尔凹陷芦草沟组储层特征及主控因素[J].岩性油气藏, 2021, 33(2):116-126.ZHANG Zhiheng, TIAN Jijun, HAN Changcheng, et al.Reservoir characteristics and main controlling factors of Lucaogou Formation in Jimsar Sag, Junggar Basin[J].Lithologic Reservoirs, 2021, 33(2):116-126.
[12] 黄华, 袁娟梅, 彭伟, 等.江汉盆地古近系潜江组盐湖沉积特征与成藏模式[J].岩性油气藏, 2021, 33(2):9-16.HUANG Hua, YUAN Juanmei, PENG Wei, et al.Sedimentary characteristics and reservoir accumulation model of salt lake of Paleogene Qianjiang Formation in Jianghan Basin[J].Lithologic Reservoirs, 2021, 33(2):9-16.
[13] 刘江艳, 张昌民, 朱锐, 等.江汉盆地新沟油田新沟嘴组盐韵律多级划分及其地质意义[J].古地理学报, 2015, 17(4):565-572.LIU Jiangyan, ZHANG Changmin, ZHU Rui, et al.Multi-stage salt rhythms division and its geological significance of the Xingouzui Formation in Xingou Oilfield, Jianghan Basin[J].Journal of Palaeogeography, 2015, 17(4):565-572.
[14] 李元奎, 王铁成.柴达木盆地狮子沟地区中深层裂缝性油藏[J].石油勘探与开发, 2001, 28(6):12-15.LI Yuankui, WANG Tiecheng.Middle-deep fractured oil reservoir of Shizigou area in Qaidam Basin[J].Petroleum Exploration and Development, 2001, 28(6):12-15.
[15] 唐士跃, 易德彬, 保吉成.测井技术在尕斯油田下干柴沟组上段灰岩储层岩性识别中的应用[J].石油天然气学报(江汉石油学院学报), 2006, 28(4):301-303.TANG Shiyue, YI Debin, BAO Jicheng.Application of logging technology in lithology identification of limestone reservoir in upper member of Xiaganchaigou Formation in Gasi Oilfield[J].Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2006, 28(4):301-303.
[16] 纪友亮, 马达德, 薛建勤, 等.柴达木盆地西部新生界陆相湖盆碳酸盐岩沉积环境与沉积模式[J].古地理学报, 2017, 19(5):757-772.JI Youliang, MA Dade, XUE Jianqin, et al.Sedimentary environments and sedimentary model of carbonate rocks in the Cenozoic lacustrine basin, western Qaidam Basin[J].Journal of Palaeogeography (Chinese Edition), 2017, 19(5):757-772.
[17] 易定红, 王建功, 石兰亭, 等.柴达木盆地英西地区E32碳酸盐岩沉积演化特征[J].岩性油气藏, 2019, 31(2):46-55.YI Dinghong, WANG Jiangong, SHI Lanting, et al.Sedimentary evolution characteristics of E 3 2 carbonate rocks in Yingxi area, Qaidam Basin[J].Lithologic Reservoirs, 2019, 31(2):46-55.
[18] 张道伟, 薛建勤, 伍坤宇, 等.柴达木盆地英西地区页岩油储层特征及有利区优选[J].岩性油气藏, 2020, 32(4):1-11.ZHANG Daowei, XUE Jianqin, WU Kunyu, et al.Shale oil reservoir characteristics and favorable area optimization in Yingxi area, Qaidam Basin[J].Lithologic Reservoirs, 2020, 32(4):1-11.
[19] 袁剑英, 黄成刚, 夏青松, 等.咸化湖盆碳酸盐岩储层特征及孔隙形成机理:以柴西地区始新统下干柴沟组为例[J].地质论评, 2016, 62(1):111-126.YUAN Jianying, HUANG Chenggang, XIA Qingsong, et al.The characteristics of carbonate reservoir, and formation mechanism of pores in the saline Lacustrine Basin:A case study of the Eocene Lower Ganchaigou Formation in western Qaidam Basin[J].Geological Review, 2016, 62(1):111-126.
[20] 李翔, 王建功, 张平, 等.柴达木盆地英西地区E32裂缝成因与油气地质意义[J].岩性油气藏, 2018, 30(6):45-54.LI Xiang, WANG Jiangong, ZHANG Ping, et al.Fracture genesis mechanism and geological significance of E32 in Yingxi area, Qaidam Basin[J].Lithologic Reservoirs, 2018, 30(6):45-54.
[21] 张永庶, 张审琴, 吴颜雄, 等.基于成像测井和岩性扫描测井的沉积相研究:以柴达木盆地黄瓜峁地区为例[J].新疆石油地质, 2019, 40(5):593-599.ZHANG Yongshu, ZHANG Shenqin, WU Yanxiong, et al.Study on sedimentary facies based on FMI logging and LS logging:A case study of Huangguamao area, Qaidam Basin[J].Xinjiang Petroleum Geology, 2019, 40(5):593-599.
[22] 李翔, 王建功, 李飞, 等.柴达木盆地西部始新统湖相微生物岩沉积特征:以西岔沟和梁东地区下干柴沟组为例[J].岩性油气藏, 2021, 33(3):63-73.LI Xiang, WANG Jiangong, LI Fei, et al.Sedimentary characteristics of Eocene lacustrine microbialites in western Qaidam Basin:A case study from Xiaganchaigou Formation in Xichagou and Liangdong areas[J].Lithologic Reservoirs, 2021, 33(3):63-73.
[23] 陈能贵, 王艳清, 徐峰, 等.柴达木盆地新生界湖盆咸化特征及沉积响应[J].古地理学报, 2015, 17(3):371-380.CHEN Nenggui, WANG Yanqing, XU Feng, et al.Palaeosalinity characteristics and its sedimentary response to the Cenozoic saltwater lacustrine deposition in Qaidam Basin[J].Journal of Palaeogeography, 2015, 17(3):371-380.
[24] 夏志远, 刘占国, 李森明, 等.岩盐成因与发育模式:以柴达木盆地英西地区古近系下干柴沟组为例[J].石油学报, 2017, 38(1):55-66.XIA Zhiyuan, LIU Zhanguo, LI Senming, et al.Origin and developing model of rock salt:A case study of lower Ganchaigou Formation of Paleogene in the west of Yingxiong ridge, Qaidam Basin[J].Acta Petrolei Sinica, 2017, 38(1):55-66.
[25] 王桂宏, 周川闽, 夏响华, 等.中新生代柴达木叠合盆地解析、动力学机制探讨及对油气控制意义研究[J].地球学报, 2019, 40(6):805-815.WANG Guihong, ZHOU Chuanmin, XIA Xianghua, et al.Superposition process and dynamic mechanism of Mesozoic-Cenozoic Qaidam Basin and their influence on hydrocarbon accumulations[J].Acta Geoscientia Sinica, 2019, 40(6):805-815.
[26] 黄成刚, 关新, 倪祥龙, 等.柴达木盆地英西地区E32咸化湖盆白云岩储集层特征及发育主控因素[J] 天然气地球科学, 2017, 28(2):219-231.HUANG Chenggang, GUAN Xin, NI Xianglong, et al.The characteristics and major factors controlling on the E32 dolomite reservoirs in saline lacustrine basin in the Yingxi area of Qaidam Basin[J].Natural Gas Geoscience, 2017, 28(2):219-231.
[27] 崔俊, 李雅楠, 毛建英, 等.英西地区裂缝系统在油气成藏过程中的作用[J].新疆石油地质, 2019, 40(5):513-519.CUI Jun, LI Yanan, MAO Jianying, et al.Effects of fracture systems during oil and gas accumulation in Yingxi area, Qaidam Basin[J].Xinjiang Petroleum Geology, 2019, 40(5):513-519.
[1] 赵思思, 李建明, 柳金城, 李积永, 崔俊. 柴达木盆地英西地区古近系下干柴沟组上段TSR与储层改造[J]. 岩性油气藏, 2022, 34(2): 66-74.
[2] 何贤, 闫建平, 王敏, 王军, 耿斌, 李志鹏, 钟光海, 张瑞湘. 低渗透砂岩孔隙结构与采油产能关系——以东营凹陷南坡F154区块为例[J]. 岩性油气藏, 2022, 34(1): 106-117.
[3] 王永骁, 付斯一, 张成弓, 范萍. 鄂尔多斯盆地东部山西组2段致密砂岩储层特征[J]. 岩性油气藏, 2021, 33(6): 12-20.
[4] 赵小萌, 郭峰, 彭晓霞, 张翠萍, 郭岭, 师宇翔. 鄂尔多斯盆地安边地区延10砂质辫状河相储层特征及主控因素[J]. 岩性油气藏, 2021, 33(6): 124-134.
[5] 杜江民, 龙鹏宇, 秦莹民, 张桐, 马宏宇, 盛军. 柴达木盆地英西地区渐新统E32储层特征及成藏模式[J]. 岩性油气藏, 2021, 33(5): 1-10.
[6] 杜猛, 向勇, 贾宁洪, 吕伟峰, 张景, 张代燕. 玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J]. 岩性油气藏, 2021, 33(5): 120-131.
[7] 王静怡, 周志军, 魏华彬, 崔春雪. 基于页岩孔隙网络模型的油水两相流动模拟[J]. 岩性油气藏, 2021, 33(5): 148-154.
[8] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[9] 李翔, 王建功, 李飞, 王玉林, 伍坤宇, 李亚锋, 李显明. 柴达木盆地西部始新统湖相微生物岩沉积特征——以西岔沟和梁东地区下干柴沟组为例[J]. 岩性油气藏, 2021, 33(3): 63-73.
[10] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[11] 张汶, 吕世聪, 赵大林, 贾海松, 蔡越钎. 渤海湾盆地西南部古近系滩坝沉积特征及主控因素[J]. 岩性油气藏, 2021, 33(3): 85-94.
[12] 黄华, 袁娟梅, 彭伟, 张亮, 文辉. 江汉盆地古近系潜江组盐湖沉积特征与成藏模式[J]. 岩性油气藏, 2021, 33(2): 9-16.
[13] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[14] 李慧莉, 尤东华, 李建交, 谭广辉, 刘士林. 麦盖提斜坡北新1井吐依洛克组角砾岩储层特征[J]. 岩性油气藏, 2021, 33(2): 26-35.
[15] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!