岩性油气藏 ›› 2026, Vol. 38 ›› Issue (1): 55–66.doi: 10.12108/yxyqc.20260105

• 地质勘探 • 上一篇    下一篇

基于随机森林优化算法的低电阻率储层含油饱和度评价方法

殷疆1(), 焦雪君2, 李小龙3, 李泰福4, 申战勇4, 李梦茜5, 孙睿1, 朱玉双1()   

  1. 1 西北大学 大陆演化与早期生命全国重点实验室/地质学系西安 710069
    2 中国石油集团共享运营有限公司 西安中心西安 710069
    3 大庆钻探工程有限公司 井下作业工程分公司吉林 松原 138000
    4 中国石油长庆油田公司 第七采油厂西安 710018
    5 中国石油玉门油田 环庆分公司甘肃 庆阳 745799
  • 收稿日期:2025-03-23 修回日期:2025-08-05 出版日期:2026-01-01 发布日期:2026-01-23
  • 第一作者:殷疆(1995—),男,西北大学在读硕士研究生,研究方向为油气地质学、深度学习人工智能。地址:(710069)陕西省西安市太白北路229号。Email:yjyj0068@163.com
  • 通信作者: 朱玉双
  • 基金资助:
    国家自然科学基金项目“高热与超压背景的成岩响应及流体活动对储层成岩-孔隙演化的影响”(41972129);国家重大专项子课题“碎屑岩输导层结构模型中成岩演化过程与流体流动特征”(2017ZX05008-004-004-001)

Evaluation method for oil saturation in low resistivity reservoirs based on random forest optimization algorithm

YIN Jiang1(), JIAO Xuejun2, LI Xiaolong3, LI Taifu4, SHEN Zhanyong4, LI Mengxi5, SUN Rui1, ZHU Yushuang1()   

  1. 1 State Key Laboratory of Continental Evolution and Early Life/Department of Geology, Northwest University, Xi’an 710069, China
    2 China National Petroleum Corporation Shared Services Co., Ltd., Xi’an Center, Xi’an 710069, China
    3 Well Operation Engineering Company, Daqing Drilling Engineering Co., Ltd.Songyuan 138000, Jilin, China
    4 Oil Production Plant No. 7, PetroChina Changqing Oilfield Company, Xi’an 710018, China
    5 Huanqing Company, PetroChina Yumen Oilfield, Qingyang 745799, Gansu, China
  • Received:2025-03-23 Revised:2025-08-05 Online:2026-01-01 Published:2026-01-23
  • Contact: ZHU Yushuang E-mail:yjyj0068@163.com;zysnwu@163.com

摘要:

为了解决低阻油藏传统电法测井含油饱和度解释困难的问题,提出了一种基于随机森林优化算法的低电阻率储层含油饱和度评价方法,并应用于鄂尔多斯盆地环庆地区侏罗系延安组低阻储层中。研究结果表明:①基于随机森林回归算法建立含油饱和度解释模型,引入克拉克星鸦算法(NOA)优化随机森林超参数寻优过程,综合利用岩心和测井资料,经机器自学习训练,建立新的模型(NOA-RF)。②NOA方法加快了随机森林模型的训练速度,集中寻得全局最优超参数组合用时26.17 min,相比传统网格法的耗时缩短了36.18 min,且提升了含油饱和度模型的拟合精度(96.6%),优于传统网格搜索法(83.9%)和Archie法(45.2%)的精度。③利用NOA-RF模型预测的环庆地区低阻储层的含油饱和度与岩心实际含油饱和度相关系数达0.977 9,油水层识别的准确率为93.33%,比传统Archie法的准确率高53.33%。

关键词: 低电阻率储层, NOA优化算法, 随机森林回归算法, 含油饱和度, 延安组, 侏罗系, 环庆地区, 鄂尔多斯盆地

Abstract:

To address the challenges in interpreting oil saturation in low resistivity reservoirs using conventional electrical logging methods, an evaluation method based on a random forest optimization algorithm was proposed, and was applied in low resistivity reservoirs of Jurassic Yan’an Formation, Huanqing area, Ordos Basin. The results show that: (1) An oil saturation interpretation model was established using random forest regression algorithm, the Nutcracker Optimizer Algorithm (NOA) was introduced to optimize the hyperparameter tuning of the random forest. By integrating core and logging data through machine learning training, an NOA-optimized random forest saturation model (NOA-RF) was established. (2) NOA method accelerates the training speed of the random forest model, it takes 26.17 minutes to identify the globally optimal hyperparameter combination,which is 36.18 minutes faster than conventional grid search. It also improves the fitting accuracy of the oil saturation model by 96.6%, outperforming grid search by 83.9% and Archie’s method by 45.2%. (3) NOA-RF model achieved a correlation coefficient up to 0.977 9 between predicted and core actual oil saturation in Huanqing area low resistivity reservoirs, with oil-water layer identification accuracy of 93.33%, representing 53.33% improvement over Archie’s method.

Key words: low resistivity reservoir, nutcracker optimizer algorithm, random forest regression algorithm, oil saturation, Yan’an Formation, Jurassic, Huanqing area, Ordos Basin

中图分类号: 

  • TE122

图1

鄂尔多斯盆地环庆地区构造位置(a)及侏罗系延安组岩性地层综合柱状图(b)"

表1

环庆地区侏罗系延安组储层中黏土矿物及黄铁矿含量统计"


w(黏土矿物)/% w(黄铁矿)/%
高岭石 伊利石 绿泥石 合计
Y1 1.67 2.81 0.96 5.44 0.43
Y2 1.07 2.2 0.67 3.94 0.66
Y3 0.95 2.09 0.92 3.96 0.41
Y4 1.36 2.14 1.21 4.71 0.72
Y5 2.24 3.38 1.23 6.85 0.58
Y6 0.96 1.98 1.51 4.45 0.53
Y7 1.45 2.48 1.06 4.99 0.65
Y8 1.86 3.01 1.18 6.05 0.48
Y9 1.14 2.22 1.35 4.71 0.55
Y10 1.51 2.68 0.83 5.02 0.68
Y11 0.89 2.34 1.42 4.65 0.52
Y12 1.78 2.57 0.73 5.08 0.47

图2

环庆地区Q-n25井侏罗系延安组测井响应特征及电法模型预测含油饱和度效果"

图3

随机森林算法流程"

图4

环庆地区M-7J井侏罗系延安组声波时差与井径交会图 注:红圈部分数据点为声波时差异常数据。"

表2

基于随机森林算法的含油饱和度影响因素重要性及排序"

特征因素 重要性 排序 特征因素 重要性 排序
AT90 0.531 1 SP 0.175 7
AC 0.405 2 DEN 0.152 8
AT60 0.353 3 AT10 0.147 9
AT30 0.317 4 GR 0.113 10
CNL 0.295 5 PE 0.082 11
AT20 0.231 6

图5

基于皮尔逊相关系数法得出的含油饱和度影响因素相关关系矩阵"

图6

随机森林特征参数优选"

图7

克拉克星鸦优化算法适应性收敛"

图8

网格搜索法模型超参数的调优效果"

表3

2种随机森林模型超参数寻优效果对比"

寻优方法 超参数 寻优范围 最优取值
NOA法 n_estimators [1,500] 267
max_depth [5,30] 11
max_features [auto] 10
网格搜索法 max_depth [1,500] 391
max_depth [5,30] 7
max_features [auto] 10

表4

3种含油饱和度模型评价效果对比"

模型 数据集 R2 平均绝对误差 平均相对
误差/%
均方
误差
均方根误差
Archie法 训练集 0.476 29.863 45.93 894.727 29.912
测试集 0.452 30.375 47.55 929.823 30.493
网格搜索
随机森林
算法
训练集 0.871 6.932 10.71 47.775 6.912
测试集 0.839 8.261 12.62 65.496 8.093
NOA-RF 训练集 0.967 2.125 3.70 5.817 2.412
测试集 0.966 2.351 4.44 8.105 2.847

图9

克拉克星鸦调参的随机森林模型预测效果 注:MAE为平均绝对误差;MAPE为平均相对误差;MSE为均方误差;RMSE为均方根误差。"

图10

环庆地区Q-n32井侏罗系延安组克拉克星鸦算法优化的随机森林含油饱和度预测"

图11

环庆地区Q-62井侏罗系延安组克拉克星鸦算法优化的随机森林含油饱和度预测结果"

图12

环庆地区2口低阻井侏罗系延安组克拉克星鸦算法优化的随机森林含油饱和度预测精度"

表5

环庆地区侏罗系延安组低阻储层采用NOA-RF法与Archie法储层评价效果对比"

井名 解释
层号
NOA-RF法 Archie法 试油
结论
含油饱
和度/%
解释
结论
含油饱
和度/%
解释
结论
Q-n2 19 63.27 油层 42.51 油水同层 油层
Q-n5 26 41.73 油水同层 27.82 水层 油水同层
Q-n7 18 57.38 油层 39.66 油水同层 油层
M-3J 23 29.26 水层 23.19 水层 水层
M-6J 20 9.27 水层 31.63 油水同层 水层
M-7J 17 5.26 水层 19.34 水层 水层
M-80 15 68.02 油层 50.72 油层 油层
M-82 21 12.51 水层 27.35 水层 水层
L-2J 32 58.92 油层 38.57 油水同层 油层
L-3J 35 15.29 水层 28.76 水层 水层
L-4J 29 32.35 油水同层 30.29 油水同层 水层
L-5J 41 53.28 油层 39.83 油水同层 油层
K-1J 38 55.67 油层 34.39 油水同层 油层
K-5J 25 10.36 水层 26.35 水层 水层
K-6J 36 50.31 油层 32.65 油水同层 油层
准确率/% 93.33 40.00
[1] ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(1): 54-62.
doi: 10.2118/942054-G
[2] SIMANDOUX P. Dielectric measurements in porous media and application to shaly formations[J]. Revue de l’Institut Français du Pétrole, 1963, 18(S1):193-215.
[3] CLAVIER C, COATES G, DUMANOIR J. Theoretical and experimental bases for the dual-water model for interpretation of shaly sands[J]. Society of Petroleum Engineers Journal, 1984, 24(2):153-168.
doi: 10.2118/6859-PA
[4] 邢培俊, 孙建孟, 王克文, 等. 利用测井资料确定粘土矿物的方法对比[J]. 中国石油大学学报(自然科学版), 2008, 32(2):53-57.
XING Peijun, SUN Jianmeng, WANG Kewen, et al. Comparison of determination methods for clay minerals using log data[J]. Journal of China University of Petroleum (Edition of Natural Science), 2008, 32(2):53-57.
[5] 陆云龙, 许赛男, 郑炀, 等. 黏土附加导电校正的低阻油层含水饱和度计算方法[J]. 中国海上油气, 2023, 35(1):63-69.
LU Yunlong, XU Sainan, ZHENG Yang, et al. Water saturation calculation method of low resistivity reservoir with clay additional conductivity correction[J]. China Offshore Oil and Gas, 2023, 35(1):63-69.
[6] REVIL A. Spectral induced polarization of shaly sands:Influence of the electrical double layer[J]. Water Resources Research, 2012, 48(2):1-23.
[7] GUO Zhihua, SONG Yanjie, TANG Xiaomin, et al. Conductivity model for pyrite-bearing laminated and dispersed shaly sands based on a differential equation and the generalized Archie equation[J]. Applied Geophysics, 2018, 15(2):208-221.
doi: 10.1007/s11770-018-0685-6
[8] 骆玉虎, 何胜林, 谭伟, 等. 北部湾盆地砂砾岩低阻油层成因及饱和度计算方法[J]. 地质科技情报, 2019, 38(6):33-41.
LUO Yuhu, HE Shenglin, TAN Wei, et al. Genetic mechanism and saturation calculation method of low resistivity sandy conglo-merate oil layers in Beibu Gulf Basin[J]. Geological Science and Technology Information, 2019, 38(6):33-41.
[9] CAI Jianchao, WEI Wei, HU Xiangyun, et al. Electrical conductivity models in saturated porous media:A review[J]. Earth-Science Reviews, 2017, 171:419-433.
doi: 10.1016/j.earscirev.2017.06.013
[10] 刘堂晏, 周灿灿, 马在田, 等. 球管孔隙模型的约束寻优及应用[J]. 同济大学学报(自然科学版), 2006, 34(11):1464-1469.
LIU Tangyan, ZHOU Cancan, MA Zaitian, et al. Restricted and optimized conditions of sphere-cylinder model and its applications[J]. Journal of Tongji University (Nature Science), 2006, 34(11):1464-1469.
[11] 赵军, 韩东, 何胜林, 等. 基于水气比计算的低对比度储层流体性质识别[J]. 岩性油气藏, 2021, 33(4):128-136.
doi: 10.12108/yxyqc.20210414
ZHAO Jun, HAN Dong, HE Shenglin, et al. Identification of fluid properties of low contrast reservoir based on water-gas ratio calculation[J]. Lithologic Reservoirs, 2021, 33(4):128-136.
doi: 10.12108/yxyqc.20210414
[12] GAD M, MAHMOUD A A, PANAGOPOULOS G, et al. Predicting water saturation in a Greek oilfield with the power of artificial neural networks[J]. ACS Omega, 2025, 10(1):557-566.
doi: 10.1021/acsomega.4c07175 pmid: 39829518
[13] MELLAL I, LATRACH A, RASOULI V, et al. Water saturation prediction in the middle Bakken formation using machine learning[J]. Engineering, 2023, 4(3):1951-1964.
[14] 桂金咏, 李胜军, 高建虎, 等. 基于特征变量扩展的含气饱和度随机森林预测方法[J]. 岩性油气藏, 2024, 36(2):65-75.
doi: 10.12108/yxyqc.20240207
GUI Jinyong, LI Shengjun, GAO Jianhu, et al. A random forests prediction method for gas saturation based on feature variable extension[J]. Lithologic Reservoirs, 2024, 36(2):65-75.
doi: 10.12108/yxyqc.20240207
[15] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324
[16] 黄莉莎, 闫建平, 郭伟, 等. 基于随机森林回归算法的低电阻率页岩气储层饱和度评价[J]. 测井技术, 2023, 47(1):22-28.
HUANG Lisha, YAN Jianping, GUO Wei, et al. Evaluation of low resistivity shale gas reservoir saturation based on random forest regression method[J]. Well Logging Technology, 2023, 47(1):22-28.
[17] 吴保祥, 何金先, 张晓丽, 等. 鄂尔多斯盆地地层埋藏演化与油气成藏分析[J]. 东北石油大学学报, 2012, 36(6):8-13.
WU Baoxiang, HE Jinxian, ZHANG Xiaoli, et al. Analysis of burial evolution of stratum and oil-gas reservoirs formation in Ordos Basin[J]. Journal of Northeast Petroleum University, 2012, 36(6):8-13.
[18] 张岳桥, 董树文, 赵越, 等. 华北侏罗纪大地构造:综评与新认识[J]. 地质学报, 2007, 81(11):1462-1480.
ZHANG Yueqiao, DONG Shuwen, ZHAO Yue, et al. Jurassic tectonics of north China:A synthetic view[J]. Acta Geologica Sinica, 2007, 81(11):1462-1480.
[19] 朱筱敏, 邓秀芹, 刘自亮, 等. 大型坳陷湖盆浅水辫状河三角洲沉积特征及模式:以鄂尔多斯盆地陇东地区延长组为例[J]. 地学前缘, 2013, 20(2):19-28.
ZHU Xiaomin, DENG Xiuqin, LIU Ziliang, et al. Sedimentary characteristics and model of shallow braided delta in large-scale lacustrine:An example from Triassic Yanchang Formation in Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2):19-28.
[20] 廖新武, 杨庆红, 李超, 等. 渤海湾盆地垦利6-1油田新近系明化镇组下段浅水三角洲沉积特征[J]. 岩性油气藏, 2025, 37(2):1-11.
doi: 10.12108/yxyqc.20250201
LIAO Xinwu, YANG Qinghong, LI Chao, et al. Sedimentary characteristics of shallow water delta in the Neogene lower member of Minghuazhen Formation,Kenli 6-1 Oilfield in Bohai Bay Basin[J]. Lithologic Reservoirs, 2025, 37(2):1-11.
doi: 10.12108/yxyqc.20250201
[21] 白杨, 张晓磊, 刚文哲, 等. 鄂尔多斯盆地平凉北地区上三叠统长8段储层低含油饱和度油藏特征及成因[J]. 岩性油气藏, 2023, 35(3):66-75.
doi: 10.12108/yxyqc.20230306
BAI Yang, ZHANG Xiaolei, GANG Wenzhe, et al. Characteristics and genesis of Upper Triassic Chang 8 reservoir with low oil saturation in northern Pingliang area,Ordos Basin[J]. Lithologic Reservoirs, 2023, 35(3):66-75.
doi: 10.12108/yxyqc.20230306
[22] 王鑫, 詹艳, 赵国泽, 等. 鄂尔多斯盆地西缘构造带北段深部电性结构[J]. 地球物理学报, 2010, 53(3):595-604.
WANG Xin, ZHAN Yan, ZHAO Guoze, et al. Deep electrical structure beneath the northern section of the western margin of the Ordos Basin[J]. Chinese Journal of Geophysics, 2010, 53(3):595-604.
[23] 武娟, 罗仁泽, 雷璨如, 等. 基于大语言模型的致密砂岩储层测井含水饱和度预测[J]. 天然气工业, 2024, 44(9):77-87.
WU Juan, LUO Renze, LEI Canru, et al. Prediction of water saturation in tight sandstone reservoirs from well log data based on the large language models (LLMs)[J]. Natural Gas Industry, 2024, 44(9):77-87.
[24] WAXMAN M H, SMITS L J M. Electrical conductivities in oil bearing shaly sand[J]. Society of Petroleum Engineers Journal, 1968, 42(3):107-122.
[25] EFRON B, TIBSHIRANI R J. An introduction to the bootstrap[M]. Boca Raton: Chapman & Hall/CRC, 1994.
[26] 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3):32-38.
FANG Kuangnan, WU Jianbin, ZHU Jianping, et al. A review of technologies on random forests[J]. Journal of Statistics and Information, 2011, 26(3):32-38.
[27] MOHAMED A, REDA M, MOHAMMED J, et al. Nutcracker optimizer:A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems[J]. Knowledge-Based Systems, 2023, 262:110248.
doi: 10.1016/j.knosys.2022.110248
[28] WANG Tianze, NIE Yunli, WANG Shengli, et al. Depth control of ROV using the improved LADRC based on nutcracker optimization algorithm[J]. Ocean Engineering, 2024, 309(1):1-10.
[29] JAMEEL M, ABOUHAWWASH M. Revolutionizing optimization:An innovative nutcracker optimizer for single and multi-objective problems[J]. Applied Soft Computing, 2024, 164:112019.
doi: 10.1016/j.asoc.2024.112019
[30] 左银卿, 刘炜, 袁路波, 等. 含黄铁矿低电阻率储层测井评价技术[J]. 测井技术, 2007, 31(1):25-29.
ZUO Yinqing, LIU Wei, YUAN Lubo, et al. Logging evaluation technique for low resistivity reservoir containing pyrite[J]. Well Logging Technology, 2007, 31(1):25-29.
[31] 陈钢花, 杨叶. 利用常规测井资料确定黏土矿物含量的方法研究[J]. 岩性油气藏, 2011, 23(2):109-113.
CHEN Ganghua, YANG Ye. Method of determining clay mineral content by using conventional logging data[J]. Lithologic Reservoirs, 2011, 23(2):109-113.
doi: 10.3969/j.issn.1673-8926.2011.02.021
[32] 罗胜元, 陈孝红, 倪方杰. 自然伽马能谱测井在富有机质页岩评价和地质导向中的应用[J]. 测井技术, 2021, 45(3):297-304.
LUO Shengyuan, CHEN Xiaohong, NI Fangjie. Application of natural gamma spectroscopy logging in evaluation and guidance of black shale[J]. Well Logging Technology, 2021, 45(3):297-304.
[33] 宋宣毅, 刘月田, 马晶, 等. 基于灰狼算法优化的支持向量机产能预测[J]. 岩性油气藏, 2020, 32(2):134-140.
doi: 10.12108/yxyqc.20200215
SONG Xuanyi, LIU Yuetian, MA Jing, et al. Productivity forecast based on support vector machine optimized by grey wolf optimizer[J]. Lithologic Reservoirs, 2020, 32(2):134-140.
doi: 10.12108/yxyqc.20200215
[34] 王光宇, 宋建国, 徐飞, 等. 不平衡样本集随机森林岩性预测方法[J]. 石油地球物理勘探, 2021, 56(4):679-687.
WANG Guangyu, SONG Jianguo, XU Fei, et al. Random forests lithology prediction method for imbalanced data sets[J]. Oil Geophysical Prospecting, 2021, 56(4):679-687.
[1] 孟阳, 曹小朋, 赵浩, 杨明林, 李志鹏, 田振磊, 乌洪翠, 蒋越. 准噶尔盆地永进地区侏罗系齐古组天然裂缝发育特征及主控因素[J]. 岩性油气藏, 2026, 38(1): 13-25.
[2] 张盟勃, 彭剑康, 崔晓杰, 张栋, 倪娜, 龙盛芳, 魏朋辉. 鄂尔多斯盆地米脂北地区石炭系本溪组煤岩气储层地震预测技术[J]. 岩性油气藏, 2026, 38(1): 162-171.
[3] 荀小全, 李宏涛, 李长平, 杨帆, 刘雄. 强非均质性气藏压裂水平井分段产量劈分新方法——以鄂尔多斯盆地东胜气田二叠系盒1段气藏为例[J]. 岩性油气藏, 2026, 38(1): 191-200.
[4] 马代兵, 马文涛, 韩文元, 陈尚斌, 郭星星. 民和盆地窑街矿区侏罗系窑街组煤层气成藏条件及有利区优选[J]. 岩性油气藏, 2026, 38(1): 26-37.
[5] 苏帅, 屈红军, 尹虎, 张磊岗, 杨晓锋. 致密砂岩储层孔喉结构分形特征及其对储层物性的影响——以鄂尔多斯盆地富县地区三叠系长8段为例[J]. 岩性油气藏, 2025, 37(6): 88-98.
[6] 曹瑞波, 皮彦夫, 刘国超. 聚驱后油层渗流特征及优势渗流通道形成机制[J]. 岩性油气藏, 2025, 37(6): 191-200.
[7] 陆江, 王健, 吴楠, 李程善, 冯子飞. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力[J]. 岩性油气藏, 2025, 37(5): 34-48.
[8] 叶慧, 朱峰, 王贵重, 石万忠, 康晓宁, 董国宁, 娜孜依曼, 王任. 准噶尔盆地二叠纪—侏罗纪古地貌恢复及其油气地质意义[J]. 岩性油气藏, 2025, 37(5): 122-132.
[9] 赵润冬, 王锦昌, 罗懿, 周瑞立, 周舰. 鄂尔多斯盆地大牛地气田气水同产定容气藏动态储量计算新方法[J]. 岩性油气藏, 2025, 37(5): 186-192.
[10] 田继先, 石正灏, 李剑, 沙威, 蒋峥文, 杨磊, 鱼雪, 蒲永霞. 柴达木盆地侏罗系煤岩气成藏条件与勘探潜力[J]. 岩性油气藏, 2025, 37(4): 17-25.
[11] 王永刚, 杜广宏, 何润, 瞿长, 佘钰蔚, 黄诚. 鄂尔多斯盆地陇东地区下古生界风化壳储层地球物理识别及分布预测[J]. 岩性油气藏, 2025, 37(4): 127-135.
[12] 肖文华, 杨军, 严宝年, 王建国, 李少勇, 马淇琳, 李宗霖, 薛欢召. 鄂尔多斯盆地环庆地区三叠系长8致密砂岩储层特征及成藏主控因素[J]. 岩性油气藏, 2025, 37(3): 23-32.
[13] 尹照普, 朱峰, 周志尧, 王丽丽, 刘晓晔, 娜孜伊曼, 汪钰婷, 黄大瑞. 准噶尔盆地莫南斜坡侏罗系西山窑组油气成藏条件及富集主控因素[J]. 岩性油气藏, 2025, 37(3): 33-46.
[14] 张兆辉, 张皎生, 刘俊刚, 邹建栋, 张建伍, 廖建波, 李智勇, 赵雯雯. 鄂尔多斯盆地陇东地区三叠系长81亚段岩石相测井识别及勘探意义[J]. 岩性油气藏, 2025, 37(3): 95-107.
[15] 何小龙, 张兵, 徐川, 肖斌, 田云英, 李琢, 何一帆. 窄河道砂体中钙质夹层特征及其对储层质量的影响——以川西北梓潼地区侏罗系沙一段为例[J]. 岩性油气藏, 2025, 37(3): 129-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!