岩性油气藏 ›› 2010, Vol. 22 ›› Issue (2): 69–73.doi: 10.3969/j.issn.1673-8926.2010.02.012

• 油气地质 • 上一篇    下一篇

孟加立扇某区块地层层序划分及典型地震相识别

吴嘉鹏1,2,王英民1,2,马贵明3,龚承林1,2,张雷1,2,刘曾勤1,2   

  1. 1.中国石油大学(北京)资源与信息学院;2.中国石油大学(北京)油气资源与探测国家重点实验室; 3.中国石油天然气勘探开发公司
  • 出版日期:2010-06-15 发布日期:2010-06-15
  • 第一作者:吴嘉鹏,1987 年生,男,中国石油大学(北京)在读硕士研究生,研究方向为深水沉积、层序地层。地址:(102249)北京市昌平 区中国石油大学(北京)资源与信息学院综合科研楼906。电话:(010)89733506。E-mail:wjp_better@sina.com
  • 基金资助:

    国家自然科学基金项目(编号:40972077)“深水重力流与底流交互作用的过程和响应—— 以台湾浅滩陆坡为例”资助。

Sequence stratigraphy and typical seismic facies in one exploration block of Bengal Fan

WU Jiapeng 1,2,WANG Yingmin 1,2, MA Guiming3, GONG Chenglin 1,2, ZHANG Lei 1,2, LIU Zengqin 1,2   

  1. 1.Faculty ofNatural Resources andInformation Technology,China e邢 ofPetroleum,Beijing 102249,China; 2.State Key Laboratory ofPetroleum Resource and Prospecting,China University ofPetroleum,Beo'ing 102249,China; 3.ChinaNationalOil andGasExploration andDeve却raentCorporation,Beijing10083,China
  • Online:2010-06-15 Published:2010-06-15

摘要:

研究区位于孟加拉扇某区块水深大于2 000 m的陆坡深水区,区内缺乏典型的层序地层界面。该文以层序地层学理论为指导,通过地震属性、分频、地震相等分析,开展了层序地层划分及沉积体的识别。依据深水沉积旋回在地震剖面上振幅特征的变化,进行了层序界面的识别,进而在等时层序地层格架内研究地震相及沉积相的分布特征,参考深水沉积相发育模式,并结合“U”形相、丘状相、强振幅平行相、中弱振幅平行相以及透明杂乱反射相等5种典型地震相的外部形态、发育位置等,认为各地震相分别对应水道、水道堤岸、浊积朵体、深海泥岩以及块状搬运复合体等沉积单元,并指出典型地震相的分布特征,可辅助地层层序的划分。

关键词: 低渗透油藏, 注水, 非线性渗流:压力梯度

Abstract:

The study area is located in the deep-water area,with water depth beneath 2 000 m,so it is dificult to recognize the sequence boundary with the seismic termination.Based on sequence stratigraphy theory,seismic facies combining with seismic attribute and~equency division are applied to carry out the sequence stratigraphy division and deposition identification.According to the amplitude characteristics of deep water sedimentary cycles on seismic profiles,the sequence boundaries are identified.LST and T-HST developed in each third-order sequence. Characteristics of the seismic facies and the sedimentary facies are analyzed in the equitime sequence framework. Referred to the sedimentary facies model in the deep water,and integrated with the external configuration and the localization of the five typical seismic facies,it is regarded that the U-shaped facies, dome-shaped facies,parallel seismic facies with high amplitude,parallel seismic facies with mid-low amplitude and tran sparent and chaotic reflecting facies glee respectively on behalf of incised channel,channel-levee complex, turbidite lobes,deep-water mudstone and mass-transport deposits.The distribution characteristics of the typical seismic facies are helpful to the recognition of the sequence boundaries.

Key words: low permeability reservoir, water injection, non-linear fluid flow through porous medium, pressure gradient

[1] 赵政璋,赵贤正,李景明,等.国外海洋深水油气勘探发展趋势及启示[J].中国石油勘探,2005,10(6):71-76.
[2] 吕福亮,贺训云,武金云,等.世界深水油气勘探现状、发展趋势及对我国深水勘探的启示[J].中国石油勘探,2007,12(6):28-31.
[3] Curray J R,Emmel F G,Moore D G. The Bengal Fan:Morphology,geometry,stratigraphy,history and processes [J]. Marine and Petroleum Geology,2003,19:1 191-1 223.
[4] Shannon P M,Stoker M S,Praeg D,et al. Sequence stratigraphic analysis in deep-water,underfilled NW European passive margin basins[J]. Marine and Petroleum Geology,2005,22:1 185-1 200.
[5] Weber M E,Wiedicke M H,Kudrass H R,et al. Active growth of the Bengal Fan during sea-level rise and highstan[J]. Geology,1997,25(4):315-318.
[6] 王英民. 对层序地层学工业化应用中层序分级混乱问题的讨论[J].岩性油气藏,2007,19(1):9-15.
[7] 周川,王英民,黄志超,等.澳大利亚北波拿巴盆地北部地区中生界层序地层与沉积相特征研究[J].岩性油气藏,2009,21(3):56-59.
[8] 徐兆辉,刘震,王露,等.层序地层学在泰国湾盆地柬埔寨海域D 区块的应用[J].岩性油气藏,2009,21(3):12-17.
[9] 谢锐杰. 东营凹陷民丰地区沙三下段层序地层与沉积相研究[J].岩性油气藏,2008,20(3):39-43.
[10] 李本才,孙凯,白洪彬,等.伊通盆地层序地层格架与层序构成分析[J].岩性油气藏,2009,21(4):28-31.
[11] Schwenk T,Spieβ V,Breitzke M, et al. The architecture and evolution of the Middle Bengal Fan in vicinity of the active channel -levee system imaged by high-resolution seismic data[J]. Marine and Petroleum Geology,2005,22:637-656.
[12] Bowman R M. Submarine fan and related depositional systemsⅡ:variability in reservoir architecture and wireline log character [J].Marine and Petroleum Geology,1998,15:821-839.
[13] Bowman R M,Reading H. Submarine fan systemsⅠ:Characterization and stratigraphic prediction[J]. Marine and Petroleum Geology,1998,15:687-717.
[14] Posamentier H W,Kolla V. Seismic geomorphology and stratigraphy of depositional elements in deepwater settings [J]. Journal of Sedimentary Research,2003,73(3):367-388.
[15] 李庆忠.近代河流沉积与地震地层学解释[J].石油物探, 1994,33(2):26-41.
[16] Lopez M. Architecture and depositional pattern of the Quarternary deep-sea fan of the Amazon [J]. Marine and Petroleum Geology,2001, 18:479-486.
[17] Schwenk T,Spieβ V,Breitzke M,et al. The architecture and evolution of the Middle Bengal Fan in vicinity of the active channel levee system imaged by high-resolution seismic data [J]. Marineand Petroleum Geology,2005,22:637-656.
[18] Mutti E,Normark W R. An integrated approach to the study of turbidite systems[M]. New York:Springer-Verlag,1991:75-106.
[19] Deptuck M E,Steffans G S,Barton M,et al. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian sea[J]. Marine and Petroleum Geology,2003,20:649-676.
[20] Weimer P,Slatt R M. Introduction to the petroleum geology of deep water settings[M]. AAPG/Datapages Tulsa,Oklahoma,USA:AAPG,2007: 343-418.
[21] 李磊,王英民,黄志超,等.尼日尔三角洲深水区层序地层及地震相研究[J].沉积学报,2008,26(3):407-416.
[1] 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159.
[2] 孙亮, 李保柱, 刘凡. 基于Pollock流线追踪的油藏高效水驱管理方法[J]. 岩性油气藏, 2021, 33(3): 169-176.
[3] 陈明江, 程亮, 陆涛. Ahdeb油田Khasib油藏孔隙结构及其对注水开发的影响[J]. 岩性油气藏, 2020, 32(3): 133-143.
[4] 代波, 王磊飞, 庄建, 袁维彬, 王学生. 超低渗透油藏CO2驱最小混相压力实验[J]. 岩性油气藏, 2020, 32(2): 129-133.
[5] 张意超, 陈民锋, 屈丹, 毛梅芬, 杨子由. X油田特低渗透油藏井网加密效果预测方法[J]. 岩性油气藏, 2020, 32(1): 144-151.
[6] 孙亮, 李勇, 杨菁, 李保柱. 薄层底水碳酸盐岩油藏水平井含水上升模式及优化注水技术[J]. 岩性油气藏, 2019, 31(6): 135-144.
[7] 安杰, 唐梅荣, 曹宗熊, 王文雄, 陈文斌, 吴顺林. 超低渗透低压油藏水平井转变开发方式试验[J]. 岩性油气藏, 2019, 31(5): 134-140.
[8] 张吉磊, 罗宪波, 张运来, 何逸凡, 周焱斌. 提高稠油底水油藏转注井注水效率研究[J]. 岩性油气藏, 2019, 31(4): 141-148.
[9] 周焱斌, 何逸凡, 章威, 张吉磊, 杨磊. 海上注水开发油田单井经济极限含水率分析[J]. 岩性油气藏, 2019, 31(3): 130-134.
[10] 王振鹏, 陈民锋, 尹承哲. 砾岩油藏水驱开发潜力分级评价[J]. 岩性油气藏, 2018, 30(5): 109-115.
[11] 赖书敏. 特高含水后期油藏细分注水界限研究——以胜利油田整装油藏为例[J]. 岩性油气藏, 2018, 30(5): 124-130.
[12] 曹茜, 王志章, 王野, 张栋梁, 公言杰, 邹开真, 樊太亮. 砂砾岩储层分布非均质性和质量非均质性研究——以克拉玛依油田五2东区克上组为例[J]. 岩性油气藏, 2018, 30(2): 129-138.
[13] 殷代印, 项俊辉, 王东琪. 大庆油田长垣外围特低渗透扶杨油层综合分类[J]. 岩性油气藏, 2018, 30(1): 150-154.
[14] 李友全, 韩秀虹, 阎燕, 张德志, 周志为, 孟凡坤. 低渗透油藏CO2吞吐压力响应曲线分析[J]. 岩性油气藏, 2017, 29(6): 119-127.
[15] 陈明强, 王宁, 张阳, 任龙. 渭北油田浅层油藏产能预测方法[J]. 岩性油气藏, 2017, 29(5): 134-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .