岩性油气藏 ›› 2012, Vol. 24 ›› Issue (2): 61–66.doi: 10.3969/j.issn.1673-8926.2012.02.012

• 油气地质 • 上一篇    下一篇

柴达木盆地乌南油田油源及油气运移探讨

张明峰1,妥进才1,张小军2,吴陈君1,郭力军3   

  1. 1.中国科学院油气资源研究重点实验室; 2.中国石油勘探开发研究院西北分院; 3.中国石油青海油田分公司勘探开发研究院
  • 出版日期:2012-04-20 发布日期:2012-04-20
  • 作者简介:张明峰(1979-),男,博士,助理研究员,主要从事地球化学和油气地球化学研究。地址:(730000)甘肃省兰州市城关区东岗西 路382 号。E-mail:zhangmingfeng_9@hotmail.com
  • 基金资助:

    国家自然科学基金项目“蛇纹石化的气体地球化学研究”(编号:41103022)、国家重点基础研究发展计划“973”项目“页岩气形成 与含气性的影响因素研究”(编号:2012CB214705)、中国科学院西部之光人才培养项目“柴达木盆地马北油气田成藏地球化学研 究”(编号:Y134MF1ZMF)联合资助。

Discussion on oil sources and petroleum migration in the Wunan Oilfield, Qaidam Basin

ZHANGMingfeng1, TUO Jincai1, ZHANG Xiaojun2,WU Chenjun1, GUO Lijun3   

  1. (1. Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China; 2. PetroChina Research Institute of Petroleum Exploration and Development-Northwest, Lanzhou 730020, China; 3. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736202, China
  • Online:2012-04-20 Published:2012-04-20

摘要:

对柴达木盆地乌南油田原油样品的地球化学系统分析表明:样品中正构烷烃系列碳数分布具有双 重性模式,Pr/Ph 值<0.5,呈强植烷优势;具有相对较高含量的三环萜烷和伽马蜡烷,藿烷C35/C34值基本上 ≤1;指示了乌南油田原油形成于半咸水—咸水湖相较强还原沉积环境,母质来源主要为低等水生生物, 藿烷和甾烷成熟度参数反映其主要为低成熟原油。在此基础上开展油源对比研究,指出乌南油田原油和 扎哈—切克里克生烃凹陷下干柴沟组烃源岩之间的生物标志化合物对比性很好。原油类型的一致性为应 用含氮化合物探讨原油运移提供了基础条件。含氮化合物分析结果反映随着运移距离的增加,咔唑类化 合物浓度存在减小的趋势,而异构体化合物中屏蔽型化合物相对富集,表明乌南油田原油自西注入,向北 和东南方向运移。由此确定位于乌南油田西侧的扎哈—切克里克生烃凹陷为其油源区,从而为该区的进 一步勘探提供了理论指导。

关键词: 构造层序, 层序地层, 构造坡折带, 岩性油气藏, 下白垩统, 贝尔断陷

Abstract:

The geochemical features of the crude oil samples collected from the Wunan Oilfield in southwestern margin of Qaidam Basin were analyzed. The result shows that the n-alkanes presented a bimodal distribution pattern (odd-toeven and even-to-odd carbon predominance), with the low ratios for both Pr/Ph(< 0.5) and C35 -Hopane/C34 -Hopane (< 1.0), and high contents of tricyclic-terpanes and gammacerane, which indicates that the crude oil formed in a midsalty to salty water reduction depositional environment, and the parent material are mainly from the lower aquatic organisms.Moreover,maturity parameters of hopane and sterane reflect its lowmaturity of crude oil. According to the oilsource correlation, the crude oil derived from the Xiaganchaigou Formation (E32) of Zhaha-Qiekelike depression. The type of crude oil is more consistent from the same source, thus the significant oil-migration effects of nitrogen compounds in the oil are observed. The composition and relative abundance of nitrogen compounds in the crude oil were used to discuss the petroleum migration in the Wunan oilfield. With the increasing of the migration distance, the concentration of nitrogen compounds is decreased, which indicates that crude oil generated on its west adjacent depression, and migrated fromwest to north and fromnorthwest to southeast. It is concluded that the crude oil in the study area came fromthe western Zhaha-Qiekelike depression.

Key words: tectonic sequence, sequence stratigraphy, structural slope break zone, lithologic reservoirs, Lower Cretaceous, Beier Rift

[1] 韩绪军,石如林.乌南油气田开发和认识[J]. 青海石油,2001,19(3):24-31.
[2] 刘得文,陈国俊,吕成福,等.柴达木盆地乌南油田N21、N22 碎屑岩储层特征及其影响因素分析[J].沉积学报,2009,27(4):657-666.
[3] 李建明,史玲玲,汪立群,等.柴西南地区昆北断阶带基岩油藏储层特征分析[J].岩性油气藏,2011,23(2):20-23.
[4] 包建平,马安来.原油中烷基苯酚和中性含氮化合物的快速分离与分析[J].江汉石油学院学报,1998,20(2):1-5.
[5] 朱扬明,苏爱国,梁狄刚,等.柴达木盆地原油地球化学特征及其源岩时代判识[J].地质学报,2003,77(2):272-279.
[6] Fowler M G,Abolins P,Douglas A G. Monocyclic alkanes in Ordovician organic matter [J]. Organic Geochemistry,1986,10 (4/6):815-823.
[7] Welte D H, Waples D W. Uber die Bevorzugung geradzahliger nalkane in sedimentgesteinen [J]. Die Naturwissenschaften,1973,60(11):516-517.
[8] Damsté S,Ten Haven,Leeuw J W,et al. Restricted utility of the pristine/phytane ratio as a palaeoenvironmental indicator[J]. Nature,1987,330:641-643.
[9] 施洋,包建平,朱翠山,等.柴达木盆地西部七个泉与咸水泉油田原油地球化学特征对比研究[J].天然气地球科学, 2010,21(1):132-138.
[10] Hanson A D,Ritts B D,Zinniker D,et al. Upper Oligocene lacustrine source rocks and petroleum systems of the northern Qaidam basin,northwest China[J]. AAPG Bulletin,2001,85(4):601-619.
[11] Philp R P,Fan P,Lewis C A,et al. Geochemical characteristics of oils from Chaidamu,Shanganning and Jianghan basins,China[J].Journal of Southeast Asian Earth Science,1991,5(1/4):351-358.
[12] Ekweozor C M,Okogun J I,Ekong D E U,et al. C24—C27 degraded triterpanes in Nigerian petroleum:Novel molecular markers of source/input or organic maturation[J]. Journal of Geochemical Exploration,1981,15(1/3):653-662.
[13] 刘玉华,文志刚,宋换新,等.鄂尔多斯盆地演武高地镇28 井区长3 油层组原油地球化学特征及其意义[J].天然气地球科学,2008,19(5):718-721.
[14] Sinninghe Damsté J S,Kenig F,Koopmans M P,et al. Evidence for gammacerane as a indicator of water column stratification [J].Geochimical et Cosmochimica Act,1995,59(9):1895-1900.
[15] 妥进才,邵宏舜,黄杏珍.湖相碳酸盐岩生油岩及其有机地球化学特征———以柴达木盆地第三系为例[J].石油实验地质,1995,17(3):272-276.
[16] Seifert W K,Moldowan J M. Application of steranes,terpanes and monoaromatics to the maturation,migration and source of crude oils [J]. Geochimica et Cosmochimica Acta,1978,42(1):77-95.
[17] 朱扬明,张春阳,张敏,等.沉积环境的氧化还原性对重排甾烷形成的作用[J].沉积学报,1997,15(4):104-108.
[18] Huang Difan,Li Jinchao,Zhang Dajiang,et al. Maturation sequence of Tertiary crude oils in the Qaidam basin and its significance in petroleum resource assessment [J]. Journal of Southeast Asian Earth Sciences,1991,5(1/4):359-366.
[19] 卢双舫, 张敏.油气地球化学[M].北京:石油工业出版社,2008:248-250.
[20] 陈启林.大型咸化湖盆地层岩性油气藏有利条件与勘探方向———以柴达木盆地柴西南古近纪为例[J].岩性油气藏,2007,19(1) :46-51.
[21] 袁剑英,付锁堂,曹正林,等.柴达木盆地高原复合油气系统多源生烃和复式成藏[J].岩性油气藏,2011,23(3):7-14.
[22] 刘洛夫,徐新德,毛东风,等.咔唑类化合物在油气运移研究中的应用初探[J].科学通报,1997,42(4):420-423.
[23] 李素梅,张爱云,王铁冠.原油中吡咯类含氮化合物的分布型式[J].石油与天然气地质,2000,21(2):118-122.
[24] 南喜祥,程敏,陈宏民,等.乌南油田地质认识[J].青海石油,2010,28(1):149-153.
[1] 张闻亭, 龙礼文, 肖文华, 魏浩元, 李铁锋, 董震宇. 酒泉盆地青西凹陷窟窿山构造带下沟组沉积特征及储层预测[J]. 岩性油气藏, 2021, 33(1): 186-197.
[2] 袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友焱, 董文彤. 坳陷湖盆大型浅水三角洲沉积特征与生长模式[J]. 岩性油气藏, 2021, 33(1): 1-11.
[3] 罗晓彤, 文华国, 彭才, 李云, 赵研. 巴西桑托斯盆地L油田BV组湖相碳酸盐岩沉积特征及高精度层序划分[J]. 岩性油气藏, 2020, 32(3): 68-81.
[4] 山鑫杰, 王飞宇, 刘念, 冯伟平, 江涛, 杜喜, 程志强, 李思嘉, 李月. 二连盆地呼仁布其凹陷南洼下白垩统烃源岩分布特征与油源分析[J]. 岩性油气藏, 2020, 32(3): 104-114.
[5] 赵汉卿, 温慧芸, 穆朋飞, 李超, 吴穹螈. 垦利A油田沙三上段近源辫状河三角洲沉积特征[J]. 岩性油气藏, 2019, 31(3): 37-44.
[6] 芮志锋, 林畅松, 杜家元, 丁琳, 李潇. 关键层序界面识别及其在岩性油气藏勘探中的意义——以惠州凹陷珠江组为例[J]. 岩性油气藏, 2019, 31(1): 96-105.
[7] 杨应, 杨巍, 朱仕军. 基于EEMD的高分辨率层序地层划分方法[J]. 岩性油气藏, 2018, 30(5): 59-67.
[8] 冯有良, 胡素云, 李建忠, 曹正林, 吴卫安, 赵长义, 崔化娟, 袁苗. 准噶尔盆地西北缘同沉积构造坡折对层序建造和岩性油气藏富集带的控制[J]. 岩性油气藏, 2018, 30(4): 14-25.
[9] 孙春燕, 胡明毅, 胡忠贵. 川东北达川-万县地区下三叠统飞仙关组层序地层研究[J]. 岩性油气藏, 2017, 29(4): 30-37.
[10] 武爱俊, 徐建永, 滕彬彬, 肖伶俐, 康波, 李凡异, 印斌浩. “动态物源”精细刻画方法与应用——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2017, 29(4): 55-63.
[11] 吴冬, 朱筱敏, 刘常妮, 南征兵, 史艳丽. Fula凹陷中央转换带对岩性油藏勘探的意义——以Abu Gabra组为例[J]. 岩性油气藏, 2017, 29(4): 64-72.
[12] 李晨, 樊太亮, 高志前, 钱小会, 傅巍. 冲积扇高分辨率层序地层分析——以辽河坳陷曙一区杜84块SAGD开发区馆陶组为例[J]. 岩性油气藏, 2017, 29(3): 66-75.
[13] 魏巍, 朱筱敏, 朱世发, 何明薇, 吴健平, 王名巍. 阿南凹陷腾格尔组凝灰质混积岩岩相及储集空间特征[J]. 岩性油气藏, 2017, 29(2): 68-76.
[14] 田鑫, 王绪本, 郭维华, 吕锡敏, 李国斌, 王荣华. Jabung区块层序地层格架及岩性油气藏勘探潜力[J]. 岩性油气藏, 2017, 29(2): 99-106.
[15] 金凤鸣, 崔周旗, 王权, 李莉, 任春玲, 崔明洋, 肖伟. 冀中坳陷地层岩性油气藏分布特征与主控因素[J]. 岩性油气藏, 2017, 29(2): 19-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .