Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (6): 1-12.doi: 10.12108/yxyqc.20250601

• PETROLEUM EXPLORATION • Previous Articles    

Hydrocarbon accumulation condition and main controlling factors of Miocene Sanya Formation in Yingdong slope area, Yinggehai Basin

CHEN Zhihong1, LYU Zhengxiang2,3, HU Gaowei1, GAO Mengtian1, CHEN Yabing1, JIN Feng1, MENG Hongyu1   

  1. 1. Hainan Branch of CNOOC(China) Co., Ltd., Haikou 570311, China;
    2. College of Energy(College of Modern Shale Gas Industry), Chengdu University of Technology, Chengdu 610059, China;
    3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
  • Received:2025-04-15 Revised:2025-05-13 Published:2025-11-07

Abstract: Based on analysis and experiment data of fluid inclusions, hydrocarbon generation thermal simulation, TOC, physical properties and casting thin sections, combined with burial-thermal history, the geological condition, accumulation process, and main controlling factors of Miocene Sanya Formation in Yingdong slope area of Yinggehai Basin were systematically studied, and hydrocarbon accumulation models were established. The results show that: (1) The organic matter type of Miocene Sanya Formation source rocks in Yingdong slope area of Yinggehai Basin is dominated by humic kerogen, with average TOC values of 0.77% and 1.21% in the northern and southern sections, respectively. The average TOC value of Oligocene coal-bearing source rocks is 1.41%. The evolution characteristics of Oligocene and Miocene source rocks in Yingdong slope area are as follows: early shallow burial, long-term immaturity-low maturity stage, late rapid deep burial, short-term rapid entry into maturity-high maturity evolution stage. The evolution degree of source rocks in the near-sag area of the southern section is the highest, followed by the slope area of the southern section, the near-sag area of the middle section and the northern section, and the evolution degree of the slope area of the middle section is the lowest. The average porosity of reservoir in the northern section is 13.56%, and the main peak of permeability is 0.1-1.0 mD. The average porosity of the southern section is 11.53%, and the main peak of permeability is 1.0-10.0 mD, the permeability is significantly better than that of the northern section, and the reservoir space is mainly composed of dissolved pores. The composite transport system composed of continuous active strike-slip faults, derived fractures and large-scale sandbodies with relatively good physical properties ensured the efficient three-dimensional migration of natural gas.(2) The natural gas component of Sanya Formation is mainly CH4, with a median volume fraction of 83.16%, mainly coal-type gas. Natural gas of the northern section mainly comes from Sanya Formation and the underlying Oligocene, while the maturity of natural gas in the southern section is 1.3%-1.7%, significantly higher than that of the northern section, mainly from the underlying Oligocene.(3) Characteristics of Sanya Formation gas reservoir are"multi-stage continuous filling and late-stage accumulation". Both the northern and southern sections have undergone three-stage of oil and gas charging, with the main charging period being Pleistocene. The main charging time of oil and gas in the southern section(3.5-1.0 Ma)is earlier than that in the northern section(2.2-1.0 Ma). The filling abundance of the southern section is higher than that of the northern section.(4) Accumulation characteristics of Sanya Formation are"strike-slip fault controlling hydrocarbon, source superimposed tectonic activity controlling reservoir, superposition of strike-slip fault activity-fracture overpressure activation controlling transportation". The source rock evolution, transport efficient and reservoir features are the main controlling factors for natural gas accumulation.

Key words: strike-slip fault, late-stage accumulation, Sanya Formation, Miocene, Yingdong slope area, Yinggehai Basin

CLC Number: 

  • TE122.1
[1] JIA Chengzao, PANG Xiongqi. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469. 贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36(12): 1457-1469.
[2] PAN Rong, ZHU Xiaomin, WANG Xingxing, et al. Advancement on formation mechanism of deep effective clastic reservoir[J]. Lithologic Reservoirs, 2014, 26(4): 73-80. 潘荣, 朱筱敏, 王星星, 等. 深层有效碎屑岩储层形成机理研究进展[J]. 岩性油气藏, 2014, 26(4): 73-80.
[3] LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45-57. 李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57.
[4] CHEN Peng, WU Xiaoning, LIN Yu, et al. Carboniferous structural characteristics and hydrocarbon accumulation regularity of Chepaizi Uplift in Junggar Basin[J]. Lithologic Reservoirs, 2025, 37(1): 68-77. 陈鹏, 武小宁, 林煜, 等. 准噶尔盆地车排子凸起石炭系构造特征与油气富集规律[J]. 岩性油气藏, 2025, 37(1): 68-77.
[5] XIONG Liang, LONG Ke, CAO Qinming, et al. Multilayer accumulation conditions and key technologies for exploration and development of the West Sichuan gas field in Sichuan Basin[J]. Acta Petrolei Sinica, 2024, 45(3): 595-614. 熊亮, 隆轲, 曹勤明, 等. 四川盆地川西气田多层系成藏条件及勘探开发关键技术[J]. 石油学报, 2024, 45(3): 595-614.
[6] SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong sag[J]. China Petroleum Exploration, 2019, 24(1): 36-45. 施和生, 王清斌, 王军, 等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探, 2019, 24 (1): 36-45.
[7] XIE Huiwen, ZHANG Liang, WANG Bin, et al. Characteristics of Triassic paleostructure and their control on sedimentation in Kuqa Depression, Tarim Basin[J]. Lithologic Reservoirs, 2025, 37(3): 13-22. 谢会文, 张亮, 王斌, 等. 塔里木盆地库车坳陷三叠纪古构造特征及对沉积的控制作用[J]. 岩性油气藏, 2025, 37(3): 13-22.
[8] WU Keqiang, PEI Jianxiang, HU Lin, et al. Accumulation model and exploration direction of medium-large gas fields in Yinggehai Basin[J]. Acta Petrolei Sinica, 2023, 44(12): 2200-2216. 吴克强, 裴健翔, 胡林, 等. 莺歌海盆地大-中型气田成藏模式及勘探方向[J]. 石油学报, 2023, 44(12): 2200-2216.
[9] YANG Kaile, HE Shenglin, YANG Zhaoqiang, et al. Diagenesis characteristics of tight sandstone reservoirs with high temperature, overpressure and high CO2 content: A case study of Neogene Meishan-Huangliu Formation in LD10 area, Yinggehai Basin[J]. Lithologic Reservoirs, 2023, 35(1): 83-95. 杨楷乐, 何胜林, 杨朝强, 等. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征: 以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95.
[10] CHEN Zhihong, CHEN Dianyuan, YING Mingxiong. Study on characteristic of the sand bodies of Huangliu Formation in DF13 area, Yinggehai Basin[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(1): 51-57. 陈志宏, 陈殿远, 应明雄. 莺歌海盆地DF13区黄流组沟道砂体特征研究[J]. 西南石油大学学报(自然科学版), 2014, 36 (1): 51-57.
[11] XIE Yuhong, LI Xushen, TONG Chuanxin, et al. High temperature and high pressure gas enrichment condition, distribution law and accumulation model in central diapir zone of Yinggehai basin[J]. China Offshore Oil and Gas, 2015, 27(4): 1-12. 谢玉洪, 李绪深, 童传新, 等. 莺歌海盆地中央底辟带高温高压天然气富集条件、分布规律和成藏模式[J]. 中国海上油气, 2015, 27(4): 1-12.
[12] LI Xushen, ZHANG Yingzhao, YANG Xibing, et al. New understandings and achievements of natural gas exploration in Yinggehai-Qiongdongnan basin, South China Sea[J]. China Offshore Oil and Gas, 2017, 29(6): 1-11. 李绪深, 张迎朝, 杨希冰, 等. 莺歌海-琼东南盆地天然气勘探新认识与新进展[J]. 中国海上油气, 2017, 29(6): 1-11.
[13] GUO Xiaoxiao, XU Xinde, GAN Jun, et al. Causes of gas geochemical differences in the ultra-high pressure gas field, the eastern slope of Yinggehai Basin[J]. Geological Journal of China Universities, 2022, 28(5): 717-725. 郭潇潇, 徐新德, 甘军, 等. 莺歌海盆地东斜坡超高压气田天然气地球化学特征差异与成因[J]. 高校地质学报, 2022, 28 (5): 717-725.
[14] ZHANG Xinshun, HUANG Zhilong, ZHU Jiancheng, et al. Reservoir characteristics and causes of low-abundance natural gas of the Haikou A block, Yinggehai basin[J]. Journal of Northeast Petroleum University, 2015, 39(1): 1-8. 张新顺, 黄志龙, 朱建成, 等. 莺歌海盆地海口A区储层特征与天然气低丰度影响因素[J]. 东北石油大学学报, 2015, 39 (1): 1-8.
[15] SHEN Jiao, LI Hongyi, WU Aijun, et al. Sedimentary characteristics and the controlling factors of reservoir in the first member of Sanya Formation in the HK29 area, Yingbei District, Yinggehai Basin[J]. Marine Geology Frontiers, 2025, 41(1): 44-56. 沈娇, 李宏义, 武爱俊, 等. 莺歌海盆地莺北区HK29区三亚组一段沉积特征及储层主控因素[J]. 海洋地质前沿, 2025, 41(1): 44-56.
[16] JIN Bo, ZHANG Jinchuan, LIU Zhen, et al. Different transformation behaviors of natural gas and significance for gas accumulation in Yinggehai Basin[J]. Natural Gas Geoscience, 2011, 22(4): 642-648. 金博, 张金川, 刘震, 等. 莺歌海盆地天然气差异输导特征及成藏意义[J]. 天然气地球科学, 2011, 22(4): 642-648.
[17] ZHOU Jie, HU Lin, HU Gaowei, et al. Characteristics of middledeep faults in the southern segment of the eastern belt of Yinggehai Basin and their controlling effect on natural gas accumulation[J]. Earth Science, 2023, 48(8): 3021-3030. 周杰, 胡林, 胡高伟, 等. 莺歌海盆地莺东斜坡带南段中深层断裂特征及控藏作用[J]. 地球科学, 2023, 48(8): 3021-3030.
[18] WU Keqiang, PEI Jianxiang, HU Lin, et al. New progress and thinking on oil and gas exploration in Yinggehai-Qiongdongnan Basin[J]. China Offshore Oil and Gas, 2024, 36(5): 1-13. 吴克强, 裴健翔, 胡林, 等. 莺歌海-琼东南盆地油气勘探新进展与思考[J]. 中国海上油气, 2024, 36(5): 1-13.
[19] LI Xushen, YANG Jihai, FAN Caiwei, et al. New progress and key technologies for high temperature and overpressure natural gas exploration in the northern part of South China Sea: Taking the Ledong slope belt of Yinggehai Basin as an example[J]. China Offshore Oil and Gas, 2020, 32(1): 23-31. 李绪深, 杨计海, 范彩伟, 等. 南海北部海域高温超压天然气勘探新进展与关键技术: 以莺歌海盆地乐东斜坡带为例[J]. 中国海上油气, 2020, 32(1): 23-31.
[20] LIU Haiyu, FAN Caiwei, TUO Lei, et al. Origin and accumulation characteristics of natural gas in the middle and north section of eastern slope, Yinggehai sag[J]. China Offshore Oil and Gas, 2022, 34(2): 25-34. 刘海钰, 范彩伟, 庹雷, 等. 莺歌海凹陷东斜坡中北段天然气成因及成藏特征[J]. 中国海上油气, 2022, 34(2): 25-34.
[21] JIA Ru, FU Xiaofei, FAN Caiwei, et al. Relationship between hydraulic fracture and natural gas accumulation in over-pressured basin: A case study on the LD-A Gas Field in the Ledong slope belt of the Yinggehai Basin[J]. Natural Gas Industry, 2024, 44 (6): 23-32. 贾茹, 付晓飞, 范彩伟, 等. 超压盆地水力破裂与天然气成藏的关系: 以莺歌海盆地乐东斜坡区LD-A气田为例[J]. 天然气工业, 2024, 44(6): 23-32.
[22] LI Xiaotang, HE Jiaxiong, ZHANG Wei. The synthetic evaluation of Paleogene and Neogene source rocks and the favorable exploration target in Yinggehai Basin[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 129-142. 李晓唐, 何家雄, 张伟. 莺歌海盆地古新近系烃源条件与有利油气勘探方向[J]. 海洋地质与第四纪地质, 2016, 36(2): 129-142.
[23] PEI Jianxiang, GUO Xiaoxiao, XUE Haitao, et al. Environment and controlling factors of the Miocene marine source rocks in the Yinggehai Basin[J]. Oil & Gas Geology, 2023, 44(4): 937-945. 裴健翔, 郭潇潇, 薛海涛, 等. 莺歌海盆地中新统海相烃源岩形成环境及控制因素[J]. 石油与天然气地质, 2023, 44(4): 937-945.
[24] XU Jianyong, ZHAO Niubin, XU Shikun, et al. Main controlling factors and development model of the Miocene marine source rocks in Yinggehai Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 54-63. 徐建永, 赵牛斌, 徐仕琨, 等. 莺歌海盆地中新统海相烃源岩发育主控因素及模式[J]. 地质科技通报, 2021, 40(2): 54-63.
[25] HUANG Baojia, HUANG Heting, LI Li, et al. Characteristics of marine source rocks and effect of high temperature and overpressure to organic matter maturation in Yinggehai-Qiongdongnan Basins[J]. Marine Origin Petroleum Geology, 2010, 15(3): 11-18. 黄保家, 黄合庭, 李里, 等. 莺-琼盆地海相烃源岩特征及高温高压环境有机质热演化[J]. 海相油气地质, 2010, 15(3): 11-18.
[26] XIE Mingxian, CHEN Guangpo, LI Juan, et al. Hydrocarbon generation kinetics of source rocks of the first member of Nantun Formation in peripheral sags of Hailar Basin[J]. Lithologic Reservoirs, 2020, 32(3): 24-33. 谢明贤, 陈广坡, 李娟, 等. 海拉尔盆地外围凹陷南一段烃源岩生烃动力学研究[J]. 岩性油气藏, 2020, 32(3): 24-33.
[27] GUO Tonglou, XIONG Liang, YANG Yingtao, et al. From reservoir, source to carrier beds exploration: A case study of tight sandstone gas in Xujiahe Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2024, 45(7): 1078-1091. 郭彤楼, 熊亮, 杨映涛, 等. 从储层、烃源岩到输导体勘探: 以四川盆地须家河组致密砂岩气为例[J]. 石油学报, 2024, 45 (7): 1078-1091.
[28] JIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 437-452. 贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48(3): 437-452.
[29] TIAN Guangrong, WANG Jiangong, SUN Xiujian, et al. Hydrocarbon accumulation differences and main controlling factors of Jurassic petroleum system in Altun piedmont of Qaidam Basin[J]. Lithologic Reservoirs, 2021, 33(1): 131-144. 田光荣, 王建功, 孙秀建, 等. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144.
[30] DAI Jinxing. Characteristics of hydrocarbon isotopes in natural gas and identification of various natural gases[J]. Natural Gas Geoscience, 1993, 4(2/3): 1-40. 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学, 1993, 4(2/3): 1-40.
[31] HE Jialing, TIAN Yaming, ZHU Xiang, et al. Geochemical characteristics and source analysis of natural gas in Middle Permian Maokou formation in Northwest Sichuan Province[J]. Contributions to Geology and Mineral Resources Research, 2025, 40(1): 63-72. 何佳玲, 田亚铭, 朱祥, 等. 川西北地区二叠系茅口组气藏天然气地球化学特征及来源分析[J]. 地质找矿论丛, 2025, 40 (1): 63-72.
[32] DONG Weiliang, HUANG Baojia. Identification marks and source discrimination of the coal type gas in YGH and QDN basins of South China Sea[J]. Natural Gas Industry, 2000, 20(1): 23-27. 董伟良, 黄保家. 南海莺-琼盆地煤型气的鉴别标志及气源判识[J]. 天然气工业, 2000, 20(1): 23-27.
[33] GUO Tonglou, XIONG Liang, YE Sujuan, et al. Theory and practice of unconventional gas exploration in carrier beds: Insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(1): 24-37. 郭彤楼, 熊亮, 叶素娟, 等. 输导层(体)非常规天然气勘探理论与实践: 四川盆地新类型页岩气与致密砂岩气突破的启示[J]. 石油勘探与开发, 2023, 50(1): 24-37.
[34] WANYAN Ze, LONG Guohui, YANG Wei, et al. Hydrocarbon accumulation and evolution characteristics of Paleogene in Yingxiongling area, Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(2): 94-102. 完颜泽, 龙国徽, 杨巍, 等. 柴达木盆地英雄岭地区古近系油气成藏过程及其演化特征[J]. 岩性油气藏, 2023, 35(2): 94-102.
[35] ZHANG Jianxin, FAN Caiwei, TAN Jiancai, et al. Evolution characteristics of sedimentary system in Yinggehai Basin in Miocene and its exploration significance[J]. Geological Science and Technology Information, 2019, 38(6): 51-59. 张建新, 范彩伟, 谭建财, 等. 莺歌海盆地中新世沉积体系演化特征及勘探意义[J]. 地质科技情报, 2019, 38(6): 51-59.
[36] WAN Zhifeng, XIA Bin, XU Lifeng, et al. Study on the dynamic mechanism of tectonic evolution in Yinggehai Basin[J]. Marine Science Bulletin, 2010, 29(6): 654-657. 万志峰, 夏斌, 徐力峰, 等. 莺歌海盆地构造演化动力学机制探讨[J]. 海洋通报, 2010, 29(6): 654-657.
[1] LIU Haiyu, HU Lin, LIU Bing, TUO Lei, LI Hu, JIANG Rufeng, WU Shijiu. Origin of overpressure and natural gas accumulation characteristics of Miocene Meishan Formation in the deepwater area,Qiongdongnan Basin [J]. Lithologic Reservoirs, 2025, 37(5): 70-82.
[2] YIN Yanshu, LI Jianqin, WU Wei, WANG Lixin, TAN Xianfeng. Sedimentary characteristics and reservoir architecture of anastomosing river in Miocene Guantao Formation,Lindong area,Dongying Sag [J]. Lithologic Reservoirs, 2025, 37(4): 1-16.
[3] LIANG Xinxin, ZHANG Yintao, CHEN Shi, XIE Zhou, ZHOU Jianxun, KANG Pengfei, CHEN Jiuzhou, PENG Zijun. Seismic response characteristics of strike-slip fault multi-core damage zones in Fuman Oilfield, Tarim Basin [J]. Lithologic Reservoirs, 2025, 37(2): 127-138.
[4] XIONG Chang, WANG Peng, LIU Xiaoyu, WANG Wei, ZHAO Xingxing, SUN Chong. Geological characteristics and enrichment model of Ordovician oil and gas in Tazhong Uplift [J]. Lithologic Reservoirs, 2025, 37(1): 53-67.
[5] HUANG Xiangsheng, YAN Zhuoyu, ZHANG Dongfeng, HUANG Heting, LUO Chengfei. Characteristics of multi-phase thermal fluid activity and natural gas migration-accumulation of Cenozoic in No. 2 fault zone of Qiongdongnan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 67-76.
[6] SONG Zhihua, LI Lei, LEI Dewen, ZHANG Xin, LING Xun. Application of improved U-Net network small faults identification technology to Triassic Baijiantan Formation in Mazhong area,Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(3): 40-49.
[7] CHEN Shuyang, HE Yunfeng, WANG Lixin, SHANG Haojie, YANG Xinrui, YIN Yanshu. Architecture characterization and 3D geological modeling of Ordovician carbonate reservoirs in Shunbei No. 1 fault zone,Tarim Basin [J]. Lithologic Reservoirs, 2024, 36(2): 124-135.
[8] HONG Guoliang, WANG Hongjun, ZHU Houqin, BAI Zhenhua, WANG Wenwen. Hydrocarbon accumulation conditions and favorable zones of lithologic reservoirs of Miocene Gumai Formation in block J,South Sumatra Basin [J]. Lithologic Reservoirs, 2023, 35(6): 138-146.
[9] ZHU Xiuxiang, ZHAO Rui, ZHAO Teng. Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No. 1 fault zone,Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(5): 131-138.
[10] SONG Xingguo, CHEN Shi, YANG Minghui, XIE Zhou, KANG Pengfei, LI Ting, CHEN Jiuzhou, PENG Zijun. Development characteristics of F16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution [J]. Lithologic Reservoirs, 2023, 35(3): 99-109.
[11] YANG Kaile, HE Shenglin, YANG Zhaoqiang, WANG Meng, ZHANG Ruixue, REN Shuangpo, ZHAO Xiaobo, YAO Guangqing. Diagenesis characteristics of tight sandstone reservoirs with high temperature,overpressure and high CO2 content: A case study of Neogene Meishan-Huangliu Formation in LD10 area,Yinggehai Basin [J]. Lithologic Reservoirs, 2023, 35(1): 83-95.
[12] FAN Caiwei, JIA Ru, LIU Bo, FU Xiaofei, HOU Jingxian, JIN Yejun. Caprock evaluation and its reservoir control of different accumulation systems in central depression zone of Yinggehai Basin [J]. Lithologic Reservoirs, 2023, 35(1): 36-48.
[13] DUAN Ruikai, ZHANG Xu, GUO Fuxin, CHEN Guoning, HU Guangyi, ZOU Jingyun. Internal sedimentary structure and stacking patterns of deep-water lobe complex:A case study of Miocene zone D in Akpo oilfield, Niger Delta Basin [J]. Lithologic Reservoirs, 2022, 34(5): 110-120.
[14] WANG Lifeng, SONG Ruiyou, CHEN Dianyuan, XU Tao, PAN Guangchao, HAN Guangming. Seismic identification and gas-bearing prediction of large-scale submarine fans of Neogene Huangliu Formation in D13 area of Yinggehai Basin [J]. Lithologic Reservoirs, 2022, 34(4): 42-52.
[15] ZHANG Xiaozhao, WU Jing, PENG Guangrong, XU Xinming, ZHENG Xiaobo. Miocene river-wave dominated sedimentary system in south belt of Enping Sag and its significance [J]. Lithologic Reservoirs, 2022, 34(2): 95-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: