Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (2): 66-74.doi: 10.12108/yxyqc.20220206

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Thermochemical sulfate reduction(TSR) and reservoir reformation of the upper Paleogene Xiaganchaigou Formation in Yingxi area, Qaidam Basin

ZHAO Sisi1, LI Jianming1,2, LIU Jincheng3, LI Jiyong3, CUI Jun3   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University(Ministry of Education & Hubei Province), Wuhan 430100, China;
    3. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China
  • Received:2021-10-08 Revised:2021-12-20 Online:2022-03-01 Published:2022-03-14

Abstract: As an important mechanism of dissolution, thermochemical sulfate reduction(TSR) is of great significance in reservoir research. Through the analysis of core observation, thin section identification, scanning electron microscope and logging data, the TSR characteristics and its effect on reservoir reformation of the upper member of Xiaganchaigou Formation in Yingxi area of Qaidam Basin were studied. The results show that:(1) The reactants of TSR are mainly hydrocarbons and sulfate rocks, and the products are high-content H2S, CO, altered hydrocarbons, calcite, elemental sulfur, pyrite, sulfur-containing organic matter. The initial reaction temperature is 100-140℃, corresponding to the formation depth of 3 113-4 536 m in Yingxi area.(2) TSR of the upper member of Xiaganchaigou Formation in Yingxi area resulted that carbonate pores and fractures were filled with modified minerals such as granular and massive pyrite, elemental sulfur and asphalt. The δ34S value of sulfurbearing minerals is relatively heavy. The hydrocarbon components of natural gas are characterized by high methane content and low heavy hydrocarbon content, and the dryness coefficient is larger. The carbon isotope δ13 C1 and δ13 C2 values are larger, and the TSR products such as H2S and relatively high content of CO2 are common. The salinity of formation water is low.(3) TSR related fluids reformed carbonate reservoir, and burial dissolution developed, forming pore systems of different sizes, with an average pore increase rate of 3.5%, which optimized reservoir physical properties.

Key words: thermochemical sulfate reduction(TSR), dissolved pore and vug, reservoir reformation, upper Xiaganchaigou Formation, Paleogene, Yingxi area, Qaidam Basin

CLC Number: 

  • TE122.2
[1] 蔡春芳, 李宏涛.沉积盆地热化学硫酸盐还原作用评述[J].地球科学进展, 2005, 20(10):1100-1105. CAI Chunfang, LI Hongtao.Thermochemical sulfate reduction in sedimentary basins:A review[J]. Advances in Earth Science, 2005, 20(10):1100-1105.
[2] 丁康乐, 李术元, 岳长涛, 等.硫酸盐热化学还原反应的研究进展[J].石油大学学报(自然科学版), 2005, 29(1):150-155. DING Kangle, LI Shuyuan, YUE Changtao, et al. Review of thermochemical sulfate reduction[J]. Journal of the University of Petroleum, China(Edition of Natural Sciences), 2005, 29(1):150-155.
[3] WORDEN R H, SMALLEY P C. H2S-producing reactions in deep carbonate gas reservoirs:Khuff Formation, Abu Dhabi[J]. Chemical Geology, 1996, 133(1/2/3/4):157-171.
[4] CROSS M M, MANNING D A C, BOTTRELL S H, et al. Thermochemical sulphate reduction(TSR):Experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs[J]. Organic Geochemistry, 2004, 35(4):393-404.
[5] AMRANI A, DEEV A, SESSIONS A L, et al. The sulfur-isotopic compositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2012, 84:152-164.
[6] KING H E, WALERS C C, HORN W C, et al. Sulfur isotope analysis of bitumen and pyrite associated with thermal sulfate reduction in reservoir carbonates at the Big Piney-La Barge production complex[J]. Geochimica et Cosmochimica Acta, 2014, 134:210-220.
[7] GVIRTZMAN Z, SAID-AHMAD W, ELLIS G S, et al. Compound-specific sulfur isotope analysis of thiadiamondoids of oils from the Smackover Formation, USA[J]. Geochimica et Cosmochimica Acta, 2015, 167:144-161.
[8] MORAD S, AL-AASM I S, NADER F H, et al. Impact of diagenesis on the spatial and temporal distribution of reservoir quality in the Jurassic Arab D and C members, offshore Abu Dhabi Oilfield, United Arab Emirates[J]. GeoArabia, 2012, 17 (3):17-56.
[9] JIANG Lei, WORDEN R H, YANG Changbing. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality[J]. Geochimica et Cosmochimica Acta, 2018, 223:127-140.
[10] 蔡春芳, 邬光辉, 李开开, 等.塔中地区古生界热化学硫酸盐还原作用与原油中硫的成因[J].矿物岩石地球化学通报, 2007, 26(1):44-48. CAI Chunfang, WU Guanghui, LI Kaikai, et al. Thermochemical sulfate reduction and origin of sulfur in crude oils in Paleozoic carbonate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(1):44-48.
[11] 丁康乐, 李术元, 岳长涛, 等.原油中有机硫化物成因的硫酸盐热化学还原反应模拟研究[J].燃料化学学报, 2008, 36(1):48-54. DING Kangle, LI Shuyuan, YUE Changtao, et al. A simulation on the formation of organic sulfur compounds in petroleum from thermochemical sulfate reduction[J]. Journal of Fuel Chemistry and Technology, 2008, 36(1):48-54.
[12] 李术元, 丁康乐, 岳长涛, 等.含水条件下正己烷与硫酸镁热化学还原反应体系模拟[J].中国石油大学学报(自然科学版), 2009, 33(1):120-126. LI Shuyuan, DING Kangle, YUE Changtao, et al. Simulation experiments on TSR system of n-hexane and magnesium sulphate in presence of water[J]. Journal of China University of Petroleum(Edition of Natural Sciences), 2009, 33(1):120-126.
[13] 张永翰, 岳长涛, 李术元, 等.原油与硫酸盐的热化学硫酸盐还原反应模拟实验及动力学研究[J].沉积学报, 2011, 29(5):994-1001. ZHANG Yonghan, YUE Changtao, LI Shuyuan, et al. Thermal simulation experiments and kinetics on the system of crude oil and magnesium sulfate[J]. Acta Sedimentologica Sinica, 2011, 29(5):994-1001.
[14] 罗厚勇, 刘文汇, 王万春, 等.四川盆地彭水地区五峰组黑色页岩中硫酸盐热化学还原反应矿物学研究[J].矿物岩石地球化学通报, 2015, 34(2):330-333. LUO Houyong, LIU Wenhui, WANG Wanchun, et al. Discovery of the mineralogical evidence of thermochemical sulfate reduction in black shale[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2):330-333.
[15] 朱光有, 张水昌, 梁英波, 等.硫酸盐热化学还原反应对烃类的蚀变作用[J].石油学报, 2005, 26(5):52-56. ZHU Guangyou, ZHANG Shuichang, LIANG Yingbo, et al. Alteration of thermochemical sulfate reduction to hydrocarbons[J]. Acta Petrolei Sinica, 2005, 26(5):52-56.
[16] 王广利, 李宁熙, 高波, 等.麻江奥陶系古油藏中的硫酸盐热化学还原反应:来自分子标志物的证据[J].科学通报, 2013, 58(33):3450-3457. WANG Guangli, LI Ningxi, GAO Bo, et al. Thermochemical sulfate reduction in fossil Ordovician deposits of the Majiang area:Evidence from molecular-marker investigation[J]. Chinese Science Bulletin, 2013, 58(33):3450-3457.
[17] 张水昌, 朱光有, 何坤.硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J].岩石学报, 2011, 27(3):809-826. ZHANG Shuichang, ZHU Guangyou, HE Kun. The effects of thermochemical sulfate reduction on occurrence oil-cracking gas and reformation of deep carbonate reservoir and the interaction mechanisms[J]. Acta Petrologica Sinica, 2011, 27(3):809-826.
[18] 杜春国, 郝芳, 邹华耀, 等.热化学硫酸盐还原作用对碳酸盐岩气藏的化学改造:以川东北地区长兴组-飞仙关组气藏为例[J].地质学报, 2007, 81(1):119-126. DU Chunguo, HAO Fang, ZOU Huayao, et al. Effect of thermochemical sulfate reduction upon carbonate gas reservoir:An example from the northeast Sichuan Basin[J]. Acta Geologica Sinica, 2007, 81(1):119-126.
[19] 孔庆芬, 张文正, 李剑锋, 等.鄂尔多斯盆地奥陶系盐下天然气地球化学特征及成因[J].天然气地球科学, 2019, 30(3):423-432. KONG Qingfen, ZHANG Wenzheng, LI Jianfeng, et al. Geochemical characteristics and genesis of Ordovician natural gas under gypsolyte in Ordos Basin[J]. Natural Gas Geoscience, 2019, 30(3):423-432.
[20] 马安来, 金之钧, 李慧莉, 等.塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J].地球科学, 2020, 45(5):1737-1753. MA Anlai, JIN Zhijun, LI Huili, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of north Shuntuoguole area of Tarim Basin, NW China[J]. Earth Science, 2020, 45(5):1737-1753.
[21] 贾连奇, 蔡春芳, 李红霞, 等.塔中地区热化学硫酸盐还原作用对深埋白云岩储层的改造[J].沉积学报, 2016, 34(6):1057-1067. JIA Lianqi, CAI Chunfang, LI Hongxia, et al. Thermochemical sulfate reduction-related mesogenetic dissolution of deeply buried dolostone reservoirs in the Tazhong area[J]. Acta Sedimentologica Sinica, 2016, 34(6):1057-1067.
[22] 王建功, 张道伟, 易定红, 等.柴西地区下干柴沟组上段湖相碳酸盐岩沉积特征及相模式[J].岩性油气藏, 2018, 30(4):1-13. WANG Jiangong, ZHANG Daowei, YI Dinghong, et al. Depositional characteristics and facies model of lacustrine carbonate rocks in the upper member of lower Ganchaigou Formation in western Qaidam Basin[J]. Lithologic Reservoirs, 2018, 30(4):1-13.
[23] 易定红, 王建功, 石兰亭, 等.柴达木盆地英西地区E32碳酸盐岩沉积演化特征[J].岩性油气藏, 2019, 31(2):46-55. YI Dinghong, WANG Jiangong, SHI Lanting, et al. Sedimentary evolution characteristics of E32 carbonate rocks in Yingxi area, Qaidam Basin[J]. Lithologic Reservoirs, 2019, 31(2):46-55.
[24] 冯进来, 曹剑, 胡凯, 等.柴达木盆地中深层混积岩储层形成机制[J].岩石学报, 2011, 27(8):2461-2472. FENG Jinlai, CAO Jian, HU Kai, et al. Forming mechanism of middle-deep mixed rock reservoir in Qaidam Basin[J]. Acta Petrologica Sinica, 2011, 27(8):2461-2472.
[25] 黄成刚, 常海燕, 崔俊, 等.柴达木盆地西部地区渐新世沉积特征与油气成藏模式[J].石油学报, 2017, 38(11):1230-1243. HUANG Chenggang, CHANG Haiyan, CUI Jun, et al. Oligocene sedimentary characteristics and hydrocarbon accumulation model in the western Qaidam Basin[J]. Acta Petrolei Sinica, 2017, 38 (11):1230-1243.
[26] 吴瑾, 朱军, 王兆兵, 等.柴达木盆地英西地区渐新统湖相碳酸盐岩储层形成与演化[J].大庆石油地质与开发, 2021, 40 (3):13-23. WU Jin, ZHU Jun, WANG Zhaobing, et al. Formation and evolution of Oligocene lacustrine carbonate reservoirs in Yingxi area of Qaidam Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(3):13-23.
[27] 陈启林, 张小军, 黄成刚, 等.柴达木盆地英西地区渐新统硫酸盐硫同位素组成及其地质意义[J].地质论评, 2019, 65(3):558-572. CHEN Qilin, ZHANG Xiaojun, HUANG Chenggang, et al. Sulfur isotopic composition of sulphate in Oligocene series in Yingxi area, Qaidam Basin, and its geological significance[J]. Geological Review, 2019, 65(3):558-572.
[28] 田继先, 赵健, 张静, 等.柴达木盆地英雄岭地区硫化氢形成机理及分布预测[J].岩性油气藏, 2020, 32(5):84-92. TIAN Jixian, ZHAO Jian, ZHANG Jing, et al. Formation mechanism and distribution prediction of hydrogen sulfide in Yingxiongling area, Qaidam Basin[J]. Lithologic Reservoirs, 2020, 32(5):84-92.
[29] 戴俊生, 叶兴树, 汤良杰, 等.柴达木盆地构造分区及其油气远景[J].地质科学, 2003, 38(3):291-296. DAI Junsheng, YE Xingshu, TANG Liangjie, et al. Tectonic units and oil-gas potential of the Qaidam Basin[J]. Chinese Journal of Geology, 2003, 38(3):291-296.
[30] 郭荣涛, 马达德, 张永庶, 等.柴达木盆地英西地区下干柴沟组上段超压孔缝型储层特征及形成机理[J].石油学报, 2019, 40(4):411-422. GUO Rongtao, MA Dade, ZHANG Yongshu, et al. Characteristics and formation mechanism of overpressure pore-fracture reservoirs for upper member of Xiaganchaigou Formation in the west of Yingxiong ridge, Qaidam Basin[J]. Acta Petrolei Sinica, 2019, 40(4):411-422.
[31] 黄成刚, 袁剑英, 田光荣, 等.柴西地区始新统湖相白云岩储层地球化学特征及形成机理[J].地学前缘, 2016, 23(3):230-242. HUANG Chenggang, YUAN Jianying, TIAN Guangrong, et al. Geochemical characteristics and formation mechanism of Eocene lacustrine dolomite reservoir in western Qaidam[J]. Earth Science Frontiers, 2016, 23(3):230-242.
[32] 徐彬, 李建明, 张永庶, 等.T-R旋回层序在陆相盐湖盆地中的应用:以柴西南英西地区下干柴沟组上段为例[J].断块油气田, 2020, 27(4):412-417. XU Bin, LI Jianming, ZHANG Yongshu, et al. Application of TR cycle sequence in continental salt lake basin:A case study of the Upper Member of Lower Ganchaigou Formation in Yingxi area, southwestern Qaidam Basin[J]. Fault-Block Oil & Gas Field, 2020, 27(4):412-417.
[33] 张永庶, 周飞, 王波, 等.柴西地区天然气成因、类型及成藏规律[J].中国石油勘探, 2019, 24(4):498-508. ZHANG Yongshu, ZHOU Fei, WANG Bo, et al. Genesis, types and reservoir formation law of natural gas in western Qaidam Basin[J]. China Petroleum Exploration, 2019, 24(4):498-508.
[1] ZHOU Ziqiang, ZHU Zhengping, PAN Renfang, DONG Yu, JIN Jineng. Simulation and prediction of tight sandstone reservoirs based on waveform facies-controlled inversion:A case study from the second member of Paleogene Kongdian Formation in southern Cangdong sag, Huanghua Depression [J]. Lithologic Reservoirs, 2024, 36(5): 77-86.
[2] ZHANG Lei, LI Sha, LUO Bobo, LYU Boqiang, XIE Min, CHEN Xinping, CHEN Dongxia, DENG Caiyun. Accumulation mechanism of overpressured lithologic reservoirs of the third member of Paleogene Shahejie Formation in northern Dongpu Sag [J]. Lithologic Reservoirs, 2024, 36(4): 57-70.
[3] FENG Bin, HUANG Xiaobo, HE Youbin, LI Hua, LUO Jinxiong, LI Tao, ZHOU Xiaoguang. Reconstruction of source-to-sink system of the third member of Paleogene Shahejie Formation in Miaoxibei area,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 84-95.
[4] ZHU Kangle, GAO Gang, YANG Guangda, ZHANG Dongwei, ZHANG Lili, ZHU Yixiu, LI Jing. Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 146-157.
[5] XI Zhibo, LIAO Jianping, GAO Rongjin, ZHOU Xiaolong, LEI Wenwen. Tectonic evolution and hydrocarbon accumulation in northern Chenjia fault zone,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 127-136.
[6] FANG Xuqing, ZHONG Qi, ZHANG Jianguo, LI Junliang, MENG Tao, JIANG Zaixing, ZHAO Haibo. Cyclostratigraphy analysis and stratigraphic division of lower Sha-3 member of Paleogene in Zhanhua Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 19-30.
[7] WANG Ya, LIU Zongbin, LU Yan, WANG Yongping, LIU Chao. Flow unit division based on SSOM and its production application: A case study of sublacustrine turbidity channels of middle Es3 in F oilfield,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(2): 160-169.
[8] NIU Chengmin, HUI Guanzhou, DU Xiaofeng, GUAN Dayong, WANG Bingjie, WANG Qiming, ZHANG Hongguo. Sedimentary model of sublacustrine fan of the third member of Paleogene Dongying Formation and large-scale oilfield discovered in western slope of Liaozhong Sag [J]. Lithologic Reservoirs, 2024, 36(2): 33-42.
[9] LI Shengqian, ZENG Jianhui, LIU Yazhou, LI Miao, JIAO Panpan. Reservoir diagenesis and pore evolution of Paleogene Pinghu Formation in Kongqueting area of Xihu Sag,East China Sea Basin [J]. Lithologic Reservoirs, 2023, 35(5): 49-61.
[10] YUE Shijun, LIU Yingru, XIANG Yiwei, WANG Yulin, CHEN Fenjun, ZHENG Changlong, JING Ziyan, ZHANG Tingjing. A new method for calculating dynamic reserves and water influx of water-invaded gas reservoirs [J]. Lithologic Reservoirs, 2023, 35(5): 153-160.
[11] HU Wangshui, GAO Feiyue, LI Ming, GUO Zhijie, WANG Shichao, LI Xiangming, LI Shengming, JIE Qiong. Fine characterization of reservoir units of Paleogene Shahejie Formation in Langgu Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(5): 92-99.
[12] WANG Jiangong, LI Jiangtao, LI Xiang, GAO Yanfang, ZHANG Ping, SUN Xiujian, BAI Yadong, ZUO Mingtao. Differences and controlling factors of lithofacies assemblages of Cenozoic lacustrine microbial carbonate rocks in western Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 1-17.
[13] ZHANG Zhenhua, ZHANG Xiaojun, ZHONG Dakang, GOU Yingchun, ZHANG Shiming. Reservoir characteristics and main controlling factors of upper member of Paleogene Xiaganchaigou Formation in Nanyishan area, northwestern Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 29-39.
[14] ZENG Xu, BIAN Congsheng, SHEN Rui, ZHOU Kejia, LIU Wei, ZHOU Suyan, WANG Xiaoluan. Nonlinear seepage characteristics of shale oil reservoirs of the third member of Paleogene Shahejie Formation in Qikou Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(3): 40-50.
[15] SIMA Liqiang, MA Jun, LIU Junfeng, YANG Huijie, WANG Liang, ZHAO Ning. Evaluation of pore effectiveness of Quaternary mudstone biogas reservoirs in Sebei area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(2): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DUAN Tianxiang,LIU Xiaomei,ZHANG Yajun,XIAO Shuqin. Discussion on geologic modeling with Petrel[J]. Lithologic Reservoirs, 2007, 19(2): 102 -107 .
[2] ZHANG Liqiu. Optimization of upward strata combination of second class oil layer in eastern south Ⅱ area of Daqing Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 116 -120 .
[3] ZHANG Di,HOU Zhongjian,WANG Yahui,WANG Ying,WANG Chunlian. Sedimentary characteristics of lacustrine carbonate rocks of the first member of Shahejie Formation in Banqiao-Beidagang area[J]. Lithologic Reservoirs, 2008, 20(4): 92 -97 .
[4] FAN Huaicai, LI Xiaoping, DOU Tiancai, WU Xinyuan. Study on stress sensitivity effect on flow dynamic features of gas wells[J]. Lithologic Reservoirs, 2010, 22(4): 130 -134 .
[5] TIAN Shufang,ZHANG Hongwen. Application of life cycle theory to predict increasing trend of proved oil reserves in Liaohe Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 98 -100 .
[6] YANG Kai,GUO Xiao. Numerical simulation study of three-dimensional two-phase black oil model in fractured low permeability reservoirs[J]. Lithologic Reservoirs, 2009, 21(3): 118 -121 .
[7] ZHAI Zhongxi, QINWeijun, GUO Jinrui. Quantitative relations between oil-gas filling degree and channel seepage flow capacity of the reservoir:Example of Shuanghe Oilfield in Biyang Depression[J]. Lithologic Reservoirs, 2009, 21(4): 92 -95 .
[8] QI Minghui,LU Zhengyuan,YUAN Shuai,LI Xinhua. The analysis on the sources of water body and characteristic of water breakthough at Block 12 in Tahe Oilfield[J]. Lithologic Reservoirs, 2009, 21(4): 115 -119 .
[9] LI Xiangbo,CHEN Qi,lin,LIU Huaqing,WAN Yanrong,MU Jingkui,LIAO Jianbo,WEI Lihua. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16 -21 .
[10] LIU Yun,LU Yuan,YI Xiangyi, ZHANG Junliang, ZHANG Jinliang,WANG Zhenxi. Gas hydrate forecasting model and its influencing factors[J]. Lithologic Reservoirs, 2010, 22(3): 124 -127 .
TRENDMD: