岩性油气藏 ›› 2018, Vol. 30 ›› Issue (2): 50–57.doi: 10.12108/yxyqc.20180206

• 油气地质 • 上一篇    下一篇

车镇凹陷沙二段滩坝砂体沉积特征及控制因素

时瑞坤1, 高秋菊1, 韩小锋2, 巴素玉1, 师涛1, 韩敏3   

  1. 1. 中国石化胜利油田分公司 物探研究院, 山东 东营 257022;
    2. 中国地质调查局西安地质调查中心, 西安 710054;
    3. 中国石化胜利油田分公司 勘探开发研究院, 山东 东营 257000
  • 收稿日期:2017-11-03 修回日期:2018-01-15 出版日期:2018-03-21 发布日期:2018-03-21
  • 作者简介:时瑞坤(1985-),男,硕士,工程师,主要从事油气勘探综合研究工作。地址:(257022)山东省东营市东营区北一路210号物探研究院。Email:280590708@qq.com。
  • 基金资助:
    国家重大科技专项“大型油气田及煤层气开发”子课题“致密油藏储层地震预测方法及地应力研究”(编号:2017ZX05072001)、国家重点基础研究发展计划(973计划)项目“陆相页岩油富集要素与有利区预测”(编号:2014CB239104)和中国石化油气勘探开发领域重大项目“济阳坳陷油气聚集规律及精细评价关键技术”子课题“复杂隐蔽油气藏地震勘探关键技术研究”(编号:ZDP17008)联合资助

Sedimentary characteristics and controlling factors of beach-bar sandbodies of the second member of Shahejie Formation in Chezhen Sag

SHI Ruikun1, GAO Qiuju1, HAN Xiaofeng2, BA Suyu1, SHI Tao1, HAN Min3   

  1. 1. Geophysical Research Institute, Shengli Oilfield Company, Sinopec, Dongying 257022, Shandong, China;
    2. Xi'an center of Geological Survey, CGS, Xi'an 710054, China;
    3. Research Institute of Petroleum Exploration and Development, Shengli Oilfield Company, Sinopec, Dongying 257000, Shandong, China
  • Received:2017-11-03 Revised:2018-01-15 Online:2018-03-21 Published:2018-03-21

摘要: 车镇凹陷沙二段沉积时期发育了一定规模的滩坝砂体,对于其沉积迁移规律等的认识不够深入,制约了滩坝砂油藏的精细勘探开发进程。为了进一步明确研究区滩坝砂体的沉积迁移规律,在充分利用岩心、录井、测井及相关测试资料的基础上,系统研究了滩坝砂体的沉积特征及控制因素。结果表明:车镇凹陷沙二段滩坝砂体以岩屑长石砂岩为主,粒度概率曲线以反映波浪作用的跳跃加悬浮式和两段跳跃加悬浮式为主;滩坝砂体沉积构造类型多样,主要发育反映波浪作用的浪成沙纹交错层理和沙纹交错层理、反映强水动力作用的平行层理,以及反映生物作用的生物钻孔和生物扰动构造;滩坝砂体主要为原地改造型,垂向上主要发育反粒序特征明显的坝砂和相序不明显的滩砂,局部地区发育由于波浪作用改造不彻底而形成的正粒序或复合相序;断层活动控制了滩坝砂体的沉积迁移规律,波浪作用控制了原地改造型滩坝的发育,物源供给控制了滩坝砂体的发育规模;整体上,车镇凹陷沙二段滩坝砂体具有“漫湖”沉积特征,成分成熟度和结构成熟度均中等偏低。研究结果可为车镇凹陷沙二段滩坝砂油藏的进一步勘探开发提供参考。

Abstract: A certain scale of beach-bar sandbodies were developed during the sedimentary stage of the second member of Shahejie Formation in Chezhen Sag. The understanding of the law of sedimentation and migration of beach-bar sandbodies is not yet deep enough, which restricts the process of fine exploration and development of beach-bar sandbody reservoirs. In order to further clarify the law of sedimentation and migration of beach-bar sandbodies, the sedimentary characteristics and controlling factors of the beach-bar sandbodies were studied by integrating the data of core, drilling, logging and relevant test data. The results show that the beach-bar sandbodies were dominated by debris-feldspar sandstones, the grain size probability curves mainly include patterns of "1 skip + 1 suspension" and "2 skip + 1 suspension" representing wave deposition. Several types of sedimentary structures were developed in beach-bar sandbodies, mainly including wave-ripple cross-bedding and ripple crossbedding with wave influence, horizontal bedding reflecting strong hydrodynamic force, burrow pores and bioturbation structures indicating biological effect. The beach-bar sandbodies were reconstructed in-situ, which mainly developed bar facies with obvious inverted sequence, beach facies with indistinct inverted sequence and beachbar facies with positive sequence and composite sequence vertically due to the role of wave transforming incompletely in partial area. The fault activities controlled the deposits and migrations of the beach-bar sandbodies, wave actions controlled the development of the in-situ reconstructed beach-bar sandbodies, and the supplies of material sources controled the development scales of the beach bar sandbodies. The beach-bar sandbodies were entirely distributed in overall basin with characteristics of over-lake deposition with meidium-low compositional and structural maturity during the sedimentation of the second member of Shahejie Formation in Chezhen Sag. The results can provide a reference for the further exploration and development of beach-bar sandbody reservoirs of the second member of Shahejie Formation in Chezhen Sag.

中图分类号: 

  • TE121.3
[1] CLIFTON H E. Supply, segregation, successions, and significance of shallow marine conglomeratic deposits. Bulletin of Canadian Petroleum Geology, 2003, 51(4):370-388.
[2] WRIGHT L D, SHORT A D. Morpho dynamic variability of surf zones and beaches:asynthesis. Marine Geology, 1984, 56(1):93-118.
[3] 王永诗, 刘惠民, 高永进, 等. 断陷湖盆滩坝砂体成因与成藏:以东营凹陷沙四上亚段为例. 地学前缘, 2012, 19(1):100-107. WANG Y S, LIU H M, GAO Y J, et al. Sandbody genesis and hydrocarbon accumulation mechanism of beach-bar reservoir in faulted-lacustrine-basins:a case study from the upper of the fourth member of Shahejie Formation,Dongying Sag. Earth Science Frontiers, 2012, 19(1):100-107.
[4] 陈世悦, 杨剑萍, 操应长.惠民凹陷西部下第三系沙河街组两种滩坝沉积特征.煤田地质与勘探, 2000, 28(3):1-4. CHEN S Y, YANG J P, CAO Y C. Sedimentary characteristics of two kinds of beach bars of Shahejie Formation in the western Huimin Depression. China Coal Geology & Exploration, 2000, 28(3):1-4.
[5] 杨勇强, 邱隆伟, 姜在兴, 等. 陆相断陷湖盆滩坝沉积模式——以东营凹陷古近系沙四上亚段为例. 石油学报, 2011, 32(3):417-423. YANG Y Q, QIU L W, JIANG Z X, et a1. A depositional pattern of beach bar in continental rift lake basins:a case study on the upper part of the fourth member of the Shahejie Formation in the Dong-ying Sag. Acta Petrolei Sinica, 2011, 32(3):417-423.
[6] 杨剑萍, 张一平, 王爱香, 等.霸县凹陷高家堡地区沙三上亚段滩坝沉积特征.特种油气藏, 2017, 24(1):1-5. YANG J P, ZHANG Y P, WANG A X, et a1.Characteristics of beach bar sedimentation in Sha-3 upper sub-interval of Gaojiapu area in the Baxian Sag. Special Oil & Gas Reservoirs, 2017, 24(1):1-5.
[7] 操应长, 王健, 刘惠民, 等.东营凹陷南坡沙四上亚段滩坝砂体的沉积特征及模式. 中国石油大学学报(自然科学版), 2009, 33(6):5-10. CAO Y C, WANG J, LIU H M, et a1. Sedimentary characteristics and models of beach-bar sandbody in the upper part of the fourth member of Paleogene in the south slope of Dongying Depression. Journal of China University of Petroleum(Edition of Natural Science), 2009, 33(6):5-10.
[8] 朱筱敏, 信荃麟, 张晋仁.断陷湖盆滩坝储集体沉积特征及沉积模式.沉积学报, 1994, 12(2):20-28. ZHU X M, XIN Q L, ZHANG J R. Sedimentary characteristics and models of the beach bar reservoirs in faulted down lacustrine basin. Acta Sedimentologica Sinica, 1994, 12(2):20-28.
[9] 张宇. 东营凹陷西部沙四段上亚段滩坝砂体的沉积特征.油气地质与采收率, 2008, 15(6):35-38. ZHANG Y. Sedimentary characteristics of beach-bar sandbodies in Es4 member in the western Dongying Depression. Petroleum Geology and Recovery Efficiency, 2008, 15(6):35-38.
[10] 张闻亭, 潘树新, 刘震华, 等.地震沉积学在坳陷湖盆滩坝砂体预测中的应用——以酒西盆地Y区块间泉子段为例.岩性油气藏, 2016, 28(6):109-116. ZHANG W T, PAN S X, LIU Z H, et a1. Application of seismic sedimentology to prediction of beach and bar sand bodies in lacustrine basin:a case study of Jianquanzi member in Y block, Jiuxi Basin. Lithologic Reservoirs, 2016, 28(6):109-116.
[11] 邓宏文, 高晓鹏, 赵宁, 等.济阳坳陷北部断陷湖盆陆源碎屑滩坝成因类型、分布规律与成藏特征.古地理学报, 2010, 12(6):737-747. DENG H W, GAO X P, ZHAO N, et a1.Genetic types, distribution patterns and hydrocarbon accumulation in terrigenous beach and bar in northern faulted-lacustrine-basin of Jiyang Depression. Journal of Palaeogeography, 2010, 12(6):737-747.
[12] 赵贤正, 王权, 淡伟宁, 等.二连盆地白垩系地层岩性油藏的勘探发现及前景.岩性油气藏, 2017, 29(2):1-9. ZHAO X Z, WANG Q, DAN W N, et a1. Exploration discovery and prospects of Cretaceous stratigraphic-lithologic reservoirs in Erlian Basin. Lithologic Reservoirs, 2017, 29(2):1-9.
[13] 崔周旗, 李莉, 王宏霞, 等.霸县凹陷古近系深层砂岩储层特征与岩性油气藏勘探.岩性油气藏, 2017, 29(2):51-58. CUI Z Q, LI L, WANG H X, et a1.Characteristics of deep sandstone reservoirs and lithologic reservoir exploration of Paleogene in Baxian Sag. Lithologic Reservoirs, 2017, 29(2):51-58.
[14] 吴冬, 朱筱敏, 刘常妮, 等. Fula凹陷中央转换带对岩性油藏勘探的意义——以Abu Gabra组为例.岩性油气藏, 2017, 29(4):64-72. WU D, ZHU X M, LIU C N, et a1. Significance of central transfer zone on lithologic reservoir exploration:a case of Abu Gabra Formation in Fula Sag, Muglad Basin, Sudan. Lithologic Reservoirs, 2017, 29(4):64-72.
[15] 陈启林. 大型咸化湖盆地层岩性油气藏有利条件与勘探方向——以柴达木盆地柴西南古近纪为例.岩性油气藏, 2007, 19(1):46-51. CHEN Q L. Favorable condition and exploration prospecting of lithologic hydrocarbon reservoir in large-scale saline basin-Case study on the Eogene in the southwest of Qaidam Basin. Lithologic Reservoirs, 2007, 19(1):46-51.
[16] 赵卫卫, 査明.陆相断陷盆地岩性油气藏成藏过程物理模拟及机理初探.岩性油气藏, 2011, 23(6):37-43. ZHAO W W, ZHA M. Physical simulation on hydrocarbon accumulation of lithologic reservoirs and its mechanism in continental rifted basin. Lithologic Reservoirs, 2011, 23(6):37-43.
[17] 周廷全, 鲜本忠, 林会喜, 等.车镇凹陷陡坡带古近系湖底扇沉积规律及储层特征.油气地质与采收率, 2007, 14(2):23-27. ZHOU T Q, XIAN B Z, LIN H X, et al. Sedimentary rules and reservoir characteristics of sublacustrine fan in Paleogene in steep slope of Chenzhen Sag. Petroleum Geology and Recovery Efficiency, 2007, 14(2):23-27.
[18] 路慎强, 王健, 操应长, 等.车西洼陷沙二段滩坝砂体粒度特征及其水动力学意义.油气地质与采收率, 2013, 20(3):26-29. LU S Q, WANG J, CAO Y C, et al. Study on characteristics and hydro-dynamic significance of grain size components of beachbar sand-bodies, second member of Shahejie Formation, Chexi Sag. Petroleum Geology and Recovery Efficiency, 2013, 20(3):26-29.
[19] 邱桂强, 王勇, 熊伟, 等.济阳坳陷新生代盆地结构差异性研究.油气地质与采收率, 2011, 18(6):1-5. QIU G Q, WANG Y, XIONG W, et al. Study on structural differences of Cenozoic basin, Jiyang Depression. Petroleum Geology and Recovery Efficiency, 2011, 18(6):1-5.
[20] 操应长, 韩敏, 王艳忠, 等.济阳坳陷车镇凹陷沙二段浅水三角洲沉积特征及模式.石油与天然气地质, 2010, 31(5):576-582. CAO Y C, HAN M, WANG Y Z, et a1.Sedimentary characteristics and models of shallow-water delta deposits in the second member of the Shahejie Formation in the Chezhen Sag, the Jiyang Depression.Oil & Gas Geology, 2010, 31(5):576-582.
[21] 操应长, 王健, 刘惠民. 利用环境敏感粒度组分分析滩坝砂体水动力学机制的初步探讨——以东营凹陷西部沙四上滩坝砂体沉积为例. 沉积学报, 2010, 28(2):274-284. CAO Y C, WANG J, LIU H M. Preliminary study on the hydrodynamic mechanism of beach-bar sandbodies with environmentally sensitive grain size components:a case study from beachbar sandbody sediments of the upper part of the fourth member of the Shahejie Formation in the western Dongying Depression. Acta Sedimentologica Sinica, 2010, 28(2):274-284.
[22] 王蛟, 陈世悦, 姜在兴, 等. 胜利油田车镇凹陷沙河街组二、三段沉积相.沉积与特提斯地质, 2005, 25(3):80-86. WANG J, CHEN S Y, JIANG Z X, et a1. Sedimentary facies in the second and third members of the Shahejie Formation in the Che-zhen Depression. Sedimentary Geology and Tethyan Geology, 2005, 25(3):80-86.
[1] 陈亚军, 荆文波, 宋小勇, 何伯斌, 伍宏美, 王睿, 解士建, 宋凯辉, 马强. 三塘湖盆地马朗凹陷上石炭统沉积岩层地球化学特征及古环境意义[J]. 岩性油气藏, 2021, 33(4): 63-75.
[2] 袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友焱, 董文彤. 坳陷湖盆大型浅水三角洲沉积特征与生长模式[J]. 岩性油气藏, 2021, 33(1): 1-11.
[3] 卿繁, 闫建平, 王军, 耿斌, 王敏, 赵振宇, 晁静. 砂砾岩体沉积期次划分及其与物性的关系——以东营凹陷北部陡坡带Y920区块沙四上亚段为例[J]. 岩性油气藏, 2020, 32(6): 50-61.
[4] 何维领, 罗顺社, 李昱东, 吴悠, 吕奇奇, 席明利. 斜坡背景下沉积物变形构造时空展布规律——以鄂尔多斯盆地镇原地区长7油层组为例[J]. 岩性油气藏, 2020, 32(6): 62-72.
[5] 蒋中发, 丁修建, 王忠泉, 赵辛楣. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境[J]. 岩性油气藏, 2020, 32(6): 109-119.
[6] 吴青鹏, 吕锡敏, 陈娟, 周在华, 袁成. 酒泉盆地营尔凹陷下白垩统下沟组沉积特征及勘探方向[J]. 岩性油气藏, 2020, 32(5): 54-62.
[7] 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83.
[8] 杨文杰, 胡明毅, 苏亚拉图, 刘昌, 元懿, 李金池. 松辽盆地苏家屯次洼初始裂陷期扇三角洲沉积特征[J]. 岩性油气藏, 2020, 32(4): 59-68.
[9] 薛辉, 韩春元, 肖博雅, 王芳, 李玲. 蠡县斜坡高阳地区沙一下亚段浅水三角洲前缘沉积特征及模式[J]. 岩性油气藏, 2020, 32(4): 69-80.
[10] 何康, 张鹏志, 周军良, 甘立琴, 舒晓. 复合曲流带内部构型界面识别新方法及其应用[J]. 岩性油气藏, 2020, 32(4): 126-135.
[11] 罗晓彤, 文华国, 彭才, 李云, 赵研. 巴西桑托斯盆地L油田BV组湖相碳酸盐岩沉积特征及高精度层序划分[J]. 岩性油气藏, 2020, 32(3): 68-81.
[12] 任梦怡, 江青春, 刘震, 卢朝进. 南堡凹陷柳赞地区沙三段层序结构及其构造响应[J]. 岩性油气藏, 2020, 32(3): 93-103.
[13] 童强, 余建国, 田云吉, 胡克来, 杨红梅, 程旭明, 朱玉双. 演武油田Y116井区延8段构型界面约束下的单河道砂体构型[J]. 岩性油气藏, 2020, 32(3): 144-158.
[14] 杨占龙, 沙雪梅, 魏立花, 黄军平, 肖冬生. 地震隐性层序界面识别、高频层序格架建立与岩性圈闭勘探——以吐哈盆地西缘侏罗系—白垩系为例[J]. 岩性油气藏, 2019, 31(6): 1-13.
[15] 郑庆华, 刘乔, 梁秀玲, 张建魁, 张建娜, 刘涛. 鄂尔多斯盆地陇东地区长4+5油层组沉积相展布特征[J]. 岩性油气藏, 2019, 31(6): 26-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .