岩性油气藏 ›› 2018, Vol. 30 ›› Issue (4): 46–55.doi: 10.12108/yxyqc.20180405

• 油气地质 • 上一篇    下一篇

古地貌对塔中地区鹰山组岩溶结构及分布的控制作用

耿晓洁1, 林畅松2, 吴斌3   

  1. 1. 中国地质大学 (北京)教务处, 北京 100083;
    2. 中国地质大学 (北京)海洋学院, 北京 100083;
    3. 中海油研究总院有限责任公司, 北京 100028
  • 收稿日期:2017-11-03 修回日期:2018-04-27 出版日期:2018-07-21 发布日期:2018-07-21
  • 作者简介:耿晓洁(1985-),女,博士,主要从事盆地分析和碳酸盐岩沉积储层研究等方面的工作。地址:(100083)北京市海淀区学院路29号中国地质大学(北京)。Email:gengxj18@163.com。
  • 基金资助:
    国家自然科学基金项目“塔里木盆地古生代关键变革期的古构造古地理演化及油气聚集”(编号:41130422)及“塔中地区晚奥陶世碳酸盐台地边缘沉积演化及其对古构造和海平面变化的响应”(编号:41502104)联合资助

Controlling of paleogeomorphology to characteristics and distribution of karst structures of Yingshan Formation in Tazhong area

GENG Xiaojie1, LIN Changsong2, WU Bin3   

  1. 1. Office of Acadamic Affairs, China University of Geosciences, Beijing 100083, China;
    2. School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;
    3. CNOOC Research Institute Ltd., Beijing 100028, China
  • Received:2017-11-03 Revised:2018-04-27 Online:2018-07-21 Published:2018-07-21

摘要: 古地貌是控制塔中地区鹰山组岩溶储层发育的重要外部因素之一。在对地震剖面进行精细解释的基础上,采用地层趋势外延法对鹰山组沉积之后的古地貌进行了恢复,划分出岩溶地貌单元,并对不同地貌单元的岩溶剖面进行了解剖。结果表明:塔中地区鹰山组的岩溶结构具有表层洞穴发育型、隔层-渗流带发育型和渗流带-潜流带发育型等3种类型。岩溶古地貌单元的分布受区域构造带控制作用明显。其中,塔中10号断裂构造带是主要的岩溶高地,该构造带作为地下水的主要补给区,发育有大型溶蚀洞穴,这些溶蚀洞穴在地震剖面上通常表现为“串珠状”反射。塔中10号断裂带与塔中Ⅰ号断裂带之间为岩溶斜坡区,该构造带作为地下水体的侧向补给区,水流方向从垂向渗流为主变为水平潜流为主,是潜流带洞穴和裂缝最为发育的地区。古地貌的低洼地带是岩溶洼地的主要分布区,岩溶洼地几乎没有岩溶储层发育。这种从岩溶高地到岩溶斜坡再到岩溶洼地的古地貌格局,可以促进溶蚀性流体从高势区向低势区的自然运移,为岩溶储层的连片发育提供了良好的构造背景。

关键词: 盐湖相, 烃源岩, 地球化学, 测井识别, 柴达木盆地

Abstract: Paleogeomorphology is one of the important external factors for the development of karst reservoir of Yingshan Formation in Tazhong area. Based on fine interpretation of seismic section,stratigraphic trend extrapolation method was adopted to restore the geomorphology after the deposition of Yingshan Formation,the karst geomorphic units were divided and the karst sections of different geomorphic units were dissected. The results show that there are three types of karst profiles including surface caves,interlayer-vadose zones and vadose-phreatic zones induced from karst structures. The distribution of paleogeomorphology units is controlled by the structural belts to a great extent. Karst highland is located in the No. 10 fault belt primarily. It is the main recharge area of groundwater with developing large karst caves. The beaded reflections on the seismic profile are this kind of structure. There is karst slope area between No. 1 and No. 10 faulted belts. It is the lateral recharge area of groundwater. The direction of water flow is from vertical seepage to groundwater flow. Hyporheic zone caves and fractures mainly developed in this area. There are basically not karst reservoirs in the karst depression area. This geomorphic pattern promotes the natural migration of dissolution fluid from the high potential region to the low and provides favorable tectonic settings for continuous development of karst reservoir.

Key words: salt-lake facies, hydrocarbon source rocks, geochemistry, logging identification, Qaidam Basin

中图分类号: 

  • TE122
[1] 杨柳, 李忠, 吕修祥, 等.塔中地区鹰山组储层表征与古地貌识别-基于电成像测井的解析.石油学报, 2014, 35(2):265-275. YANG L, LI Z, LYU X X, et al. Paleotopographic characterization and reconstruction of karst reservoir in Yingshan Formation, Tazhong area, Tarim Basin:a research based on borehole image log interpretation. Acta Petrolei Sinica, 2014, 35(2):265-275.
[2] 邓兴梁, 张庆玉, 梁彬, 等.塔中Ⅱ区奥陶系鹰山组岩溶古地貌恢复方法研究.中国岩溶, 2015, 34(2):154-157. DENG X L, ZHANG Q Y, LIANG B, et al. Reconstruction of karst paleogeomorphology for the Ordovician Yingshan Formation in the central Tarim Basin. Carsologica Sinica, 2015, 34(2):154-157.
[3] LIN C S, LI H, LIU J Y. Major unconformities, tectonostratigraphic frameword, and evolution of the superimposed Tarim Basin, Northwest China. Journal of Earth Science, 2012, 23(4):395-407.
[4] 史江龙, 李剑, 李志生, 等.塔里木盆地塔中隆起天然气地球化学特征及成因类型. 东北石油大学学报, 2016, 40(4):19-26. SHI J L, LI J, LI Z S, et al. Geochemical character and genesis types of natural gas in the Tazhong uplift of Tarim Basin. Journal of Northeast Petroleum University, 2016, 40(4):19-26.
[5] 王振宇, 杨柳明, 马锋, 等. 塔中地区下奥陶统鹰山组白云岩成因研究. 岩性油气藏, 2012, 24(1):21-25. WANG Z Y, YANG L M, MA F, et al. Origin of dolomite of Lower Ordovician Yingshan Formation in Tazhong area. Lithologic Reservoirs, 2012, 24(1):21-25.
[6] 张仲培, 王毅, 云金表, 等.塔里木盆地台盆区海西期地质事件及其油气成藏效应.大庆石油学院学报, 2007, 31(4):1-5. ZHANG Z P, WANG Y, YUN J B, et al. Hercynian geological events and effect of hydrocarbon accumulation in the platformbasin region of Tarim Basin. Journal of Daqing Petroleum Institute, 2007, 31(4):1-5.
[7] 戴传瑞, 邹伟宏, 杨海军, 等.轮古西潜山岩溶储层发育特征与评价.东北石油大学学报, 2012, 36(4):24-30. DAI C R, ZOU W H, YANG H J, et al. Develop features and evaluation of karst reservoirs in Lungu area. Journal of Northeast Petroleum University, 2012, 36(4):24-30.
[8] ZENG H, LOUCKS R, JANSON X, et al. Three-dimensional seismic geomorphology and analysis of the Ordovician paleokarst drainage system in the central Tabei Uplift, northern Tarim Basin, western China. AAPG Bulletin, 2011, 95(12):2061-2083.
[9] 滕团余, 潘建国, 张虎权, 等.塔中地区碳酸盐岩储层综合预测技术分析. 岩性油气藏, 2010, 22(4):14-19. TENG T Y, PAN J G, ZHANG H Q, et al. Prediction technique of carbonate reservoir in Tazhong area. Lithologic Reservoirs, 2010, 22(4):14-19.
[10] 韩剑发, 王红枫, 张海祖, 等.塔中地区北部斜坡带下奥陶统碳酸盐岩风化壳油气富集特征.石油与天然气地质, 2008, 29(2):167-173. HAN J F, WANG H F, ZHANG H Z, et al. Characteristics of hydrocarbon enrichment in the Lower Ordovician carbonate rock weathering crust on the northern slope zone of Tazhong area. Oil and Gas Geology, 2008, 29(2):167-173.
[11] 吕修祥, 张艳萍, 焦伟伟, 等.断裂活动对塔中地区鹰山组碳酸盐岩储集层的影响.新疆石油地质, 2011, 32(3):244-251. LYU X X, ZHANG Y P, JIAO W W, et al. Effect of fault activity on carbonate reservoir of Yingshan Formation in Tazhong area, Tarim Basin. Xinjiang Petroleum Geology, 2011, 32(3):244-251.
[12] 李传新, 贾承造, 李本亮, 等.塔里木盆地塔中凸起北斜坡古生代断裂展布与构造演化.地质学报, 2009, 83(8):1065-1072. LI C X, JIA C Z, LI B L, et al. Distribution and tectonic evolution of the Paleozoic fault system, the north slope of Tazhong Uplift, Tarim Basin. Acta Geologica Sinica, 2009, 83(8):1065-1072.
[13] 郑剑, 林新, 王振宇, 等.塔中北斜坡地区奥陶系鹰山组储层差异性分析.岩性油气藏, 2012, 24(5):90-93. ZHENG J, LIN X, WANG Z Y, et al. Reservoir differences of the Ordovician Yingshan Formation in the northern slope of Tazhong. Lithologic Reservoirs, 2012, 24(5):90-93.
[14] 李本亮, 管树魏, 李传新, 等.塔里木盆地塔中低凸起古构造演化与变形特征.地质评论, 2009, 55(4):521-529. LI B L, GUAN S W, LI C X, et al. Paleo-tectonic evolution and deformation features of the lower uplift in the central Tarim Basin. Geological Review, 2009, 55(4):521-529.
[15] 赵军, 海川, 张承森.测井储层描述在塔中Ⅰ号礁滩体中的应用. 岩性油气藏, 2008, 20(2):87-90. ZHAO J, HAI C, ZHANG C S. Application of log data in reef flat reservoir description in Tazhong No.1 slope break. Lithologic Reservoirs, 2008, 20(2):87-90.
[16] 孙东, 王宏斌, 雍学善, 等. 直径40 m溶洞距汇演顶界面不同距离时的地震响应.岩性油气藏, 2011, 23(1):94-98. SUN D, WANG H B, YONG X S, et al. Seismic response of 40 m caves with different distances from limestone top boundary. Lithologic Reservoirs, 2011, 23(1):94-98.
[17] 耿晓洁, 林畅松, 吴斌, 等.塔中地区鹰山组溶洞型层特征及油气地质意义. 东北石油大学学报, 2016, 40(6):36-43. GENG X J, LIN C S, WU B, et al. Features of paleo-cave reservoir and its petroleum geological significance of Yingshan Formation in Tazhong area. Journal of Northeast Petroleum University, 2016, 40(6):36-43.
[1] 陈亚军, 荆文波, 宋小勇, 何伯斌, 伍宏美, 王睿, 解士建, 宋凯辉, 马强. 三塘湖盆地马朗凹陷上石炭统沉积岩层地球化学特征及古环境意义[J]. 岩性油气藏, 2021, 33(4): 63-75.
[2] 李翔, 王建功, 李飞, 王玉林, 伍坤宇, 李亚锋, 李显明. 柴达木盆地西部始新统湖相微生物岩沉积特征——以西岔沟和梁东地区下干柴沟组为例[J]. 岩性油气藏, 2021, 33(3): 63-73.
[3] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[4] 龙国徽, 王艳清, 朱超, 夏志远, 赵健, 唐鹏程, 房永生, 李海鹏, 张娜, 刘健. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏, 2021, 33(1): 145-160.
[5] 田光荣, 王建功, 孙秀建, 李红哲, 杨魏, 白亚东, 裴明利, 周飞, 司丹. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144.
[6] 孔红喜, 王远飞, 周飞, 朱军, 陈阳阳, 宋德康. 鄂博梁构造带油气成藏条件分析及勘探启示[J]. 岩性油气藏, 2021, 33(1): 175-185.
[7] 徐宇轩, 代宗仰, 胡晓东, 徐志明, 李丹. 川东北沙溪庙组天然气地球化学特征及地质意义——以五宝场地区为例[J]. 岩性油气藏, 2021, 33(1): 209-219.
[8] 姚军, 乐幸福, 陈娟, 苏旺, 张永峰. 基于拟三维多属性反演的优质烃源岩分布预测[J]. 岩性油气藏, 2021, 33(1): 248-257.
[9] 蒋中发, 丁修建, 王忠泉, 赵辛楣. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境[J]. 岩性油气藏, 2020, 32(6): 109-119.
[10] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[11] 田继先, 赵健, 张静, 孔骅, 房永生, 曾旭, 沙威, 王牧. 柴达木盆地英雄岭地区硫化氢形成机理及分布预测[J]. 岩性油气藏, 2020, 32(5): 84-92.
[12] 张道伟, 薛建勤, 伍坤宇, 陈晓冬, 王牧, 张庆辉, 郭宁. 柴达木盆地英西地区页岩油储层特征及有利区优选[J]. 岩性油气藏, 2020, 32(4): 1-11.
[13] 陈更新, 王建功, 杜斌山, 刘应如, 李艳丽, 杨会洁, 李志明, 俞晓峰. 柴达木盆地尖北地区裂缝性基岩气藏储层特征[J]. 岩性油气藏, 2020, 32(4): 36-47.
[14] 金秋月, 杨希冰, 胡林, 卢梅. 北部湾盆地稠油地球化学特征及成因分析[J]. 岩性油气藏, 2020, 32(4): 81-88.
[15] 黄彦杰, 白玉彬, 孙兵华, 黄礼, 黄昌武. 鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J]. 岩性油气藏, 2020, 32(1): 66-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .