岩性油气藏 ›› 2019, Vol. 31 ›› Issue (5): 52–60.doi: 10.12108/yxyqc.20190506

• 油气地质 • 上一篇    下一篇

陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力

陈相霖1,2, 郭天旭1,2, 石砥石1,2, 侯啓东3, 王超1,2   

  1. 1. 中国地质调查局 油气资源调查中心, 北京 100083;
    2. 中国地质调查局 非常规油气地质重点实验室, 北京 100029;
    3. 中国地质大学(北京)地球科学与资源学院, 北京 100083
  • 收稿日期:2018-11-27 修回日期:2019-02-06 出版日期:2019-09-21 发布日期:2019-09-16
  • 第一作者:陈相霖(1991-),男,硕士,主要从事页岩气地质研究与资源潜力评价方面的工作。地址:(100083)北京市海淀区北四环中路267号奥运大厦。Email:442620703@qq.com。
  • 基金资助:
    国家重大科技专项“大型油气田及煤层气开发”(编号:2016zx05034-002)、中国地质调查局项目“南方页岩气资源潜力评价”(编号:DD20160181)和“桂中—南盘江页岩气地质调查”(编号:DD20190088)联合资助

Pore structure characteristics and adsorption capacity of Niutitang Formation shale in southern Shaanxi

CHEN Xianglin1,2, GUO Tianxu1,2, SHI Dishi1,2, HOU Qidong3, WANG Chao1,2   

  1. 1. Oil and Gas Resources Survey Center, China Geological Survey, Beijing 100083, China;
    2. Key Laboratory of Unconventional Oil & Gas Geology, China Geological Survey, Beijing 100029, China;
    3. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2018-11-27 Revised:2019-02-06 Online:2019-09-21 Published:2019-09-16

摘要: 为揭示陕南地区下寒武统牛蹄塘组页岩孔隙结构特征及其吸附能力,采用场发射扫描电镜观察、有机地球化学分析、全岩X射线衍射、氮气吸附和等温吸附实验等方法,通过定性观察和定量表征相结合的方式,来研究该组页岩的孔隙结构类型,并探讨页岩孔隙结构和吸附能力的主控因素。结果表明:陕南地区牛蹄塘组页岩主要发育有机质孔、粒内孔、粒间孔和微裂缝等4种孔隙类型,页岩孔径为1.8~316.7 nm,BET比表面积为1.34~13.20 m2/g,平均值为6.83 m2/g,BJH吸附总孔体积为0.003~0.011 cm3/g,平均值为0.006 cm3/g;影响页岩孔隙发育的直接因素包括总有机碳含量和热演化成熟度,二者与孔隙体积和比表面积均呈正相关性;影响页岩孔隙发育的间接因素包括汉南古隆起周缘的构造运动和沉积环境,二者对牛蹄塘组页岩热演化成熟度、埋藏深度、厚度和岩性变化均具有较大影响,从而间接控制着页岩孔隙结构的发育特征;页岩吸附能力主要受有机碳含量、孔隙体积和比表面积等因素的影响,三者与甲烷吸附气量均呈正相关性。该研究结果对陕南地区寒武系页岩气资源潜力评价及选区评价均具有重要意义。

关键词: 孔隙结构, 吸附能力, 页岩气, 牛蹄塘组, 陕南地区

Abstract: In order to reveal the pore structure characteristics and adsorption capacity of rich organic shale of Cambrian Niutitang Formation in southern Shaanxi,a series of experimental testing techniques and methods such as field emission scanning electron microscopy,organic geochemistry,X-ray diffraction(XRD),nitrogen adsorption and isothermal adsorption experiment,were used to study the pore structure types by combining qualitative observation and quantitative characterization,and the main controlling factors of pore structure and adsorption capacity of shale were discussed. The results show that the main shale pore types of Niutitang Formation are organic pores,intragranular pores,intergranular pore and microfractures. The pore diameter is 1.8-316.7 nm, the BET specific surface area is 1.34-13.20 m2/g with an average value of 6.83 m2/g,the BJH adsorbed total pore volume is 0.003-0.011 mL/g with an average value of 0.006 mL/g. The direct factors affecting shale pore development are total organic carbon content and thermal maturity,which are positively correlated with pore volume and specific surface area. The indirect factors affecting shale pore development are tectonic movement and sedimentary environment around Hannan paleo-uplift and,which have great influences on thermal maturity,burial depth, thickness and lithologic changes of Niutitang Formation shale,thus indirectly control the development of shale pore structure. The adsorption capacity of shale is mainly affected by total organic carbon content,pore volume and specific surface area,which are positively correlated with methane adsorption volume. The research results are of great significance to the potential evaluation of Cambrian shale gas resources and the evaluation of selected areas in southern Shaanxi.

Key words: pore structure, adsorption capacity, shale gas, Niutitang Formation, southern Shaanxi

中图分类号: 

  • P618.13
[1] LOUCK R G,REED R M,RUPPEL S C,et al. Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research,2009,79(12):848-861.
[2] 何治亮,胡宗全,聂海宽,等.四川盆地五峰组-龙马溪组页岩气富集特征与"建造-改造"评价思路.天然气地球科学, 2017,28(5):724-733. HE Z L,HU Z Q,NIE H K,et al. Characterization of shale gas enrichment in the Wufeng Formation-Longmaxi Formation in the Sichuan Basin of China and evaluation of its geological construction-transformation evolution sequence. Journal of Natural Gas Geoscience,2017,28(5):724-733.
[3] 刘忠宝,冯动军,高波,等.上扬子地区下寒武统高演化页岩微观孔隙特征.天然气地球科学,2017,28(7):1096-1107. LIU Z B,FENG D J,GAO B,et al. Micropore characteristics of high thermal evolution shale in Lower Cambrian series in Upper Yangtze area. Natural Gas Geoscience,2017,28(7):1096-1107.
[4] 龚小平,唐洪明,赵峰,等.四川盆地龙马溪组页岩储层孔隙结构的定量表征.岩性油气藏,2016,28(3):48-57. GONG X P,TANG H M,ZHAO F,et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin. Lithologic Reservoirs,2016,28(3):48-57.
[5] 吴世祥,汤良杰,郭彤楼,等.米仓山与大巴山交汇区构造分区与油气分布.石油与天然气地质,2005,26(3):361-365. WU S X,TANG L J,GUO T L,et al. Structural zonation and oil/gas distribution in intersecting area of Micang and Daba mountains. Oil & Gas Geology,2005,26(3):361-365.
[6] 程俊,徐晓飞,张文峰,等.上扬子西北缘宁强湾牛蹄塘组有机地球化学特征.岩性油气藏,2017,29(1):21-26. CHENG J,XU X F,ZHANG W F,et al. Organic geochemical characteristics of Niutitang Formation in Ningqiang Bay,the northwestern margin of Upper Yangtze platform. Lithologic Reservoirs, 2017,29(1):21-26.
[7] 龚大兴,林金辉,唐云凤,等.上扬子地台北缘古生界海相烃源岩有机地球化学特征.岩性油气藏,2010,22(3):31-37. GONG D X,LIN J H,TANG Y F,et al. Organic geochemical characteristics of Paleozoic marine source rocks in northern margin of Upper Yangtze platform. Lithologic Reservoirs,2010,22(3):31-37.
[8] 叶玥豪,刘树根,孙玮,等.上扬子地区上震旦统-下志留统黑色页岩微孔隙特征. 成都理工大学学报(自然科学版), 2012,39(6):575-582. YE Y H,LIU S G,SUN W,et al. Micropore characteristics of Upper Sinian-Lower Silurian black shale in Upper Yangtze area of China. Journal of Chengdu University of Technology(Science & Technology Edition),2012,39(6):575-582.
[9] 康建威,林小兵,余谦,等.复杂构造背景区页岩气富集条件研究:以大巴山前缘地区为例.石油实验地质,2017,39(4):437-443. KANG J W,LIN X B,YU Q,et al. Shale gas enrichment conditions in complex geological structure areas:a case study in the front margin of Daba mountain. Petroleum Geology & Experiment,2017,39(4):437-443.
[10] 贾锦生,宋华颖,伊海生,等.米仓山-大巴山前缘古生界重点剖面烃源岩特征研究.天然气地球科学,2011,22(6):1046-1053. JIA J S,SONG H Y,YI H S,et al. Characteristic of Paleozoic hydrocarbon source rocks from key sections of frontal Micang shan-Daba. Natural Gas Geoscience,2011,22(6):1046-1053.
[11] 裴先治,李瑞保,丁仨平,等.陕南镇巴地区大巴山与米仓山构造交接关系.石油与天然气地质,2009,30(5):576-583. PEI X Z,LI R B,DING S P,et al. Tectonic intersection relationship between Dabashan and Micangshan in Zhenba area, southern Shaanxi province. Oil & Gas Geology,2009,30(5):576-583.
[12] 余谦,牟传龙,张海泉,等.上扬子北缘震旦纪-早古生代沉积演化与储层分布特征.岩石学报,2011,27(3):672-680. YU Q,MU C L,ZHANG H Q,et al. Sedimentary evolution and reservoir distribution of northern Upper Yangtze plate in SinianEarly Paleozoic. Acta Petrologica Sinica,2011,27(3):672-680.
[13] LOUCKS R G,REED R M,RUPPEL S C,et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin,2015, 96(6):1071-1098.
[14] CURTIS J B. Fractured shale-gas systems. AAPG Bulletin,2002, 86(11):1921-1938.
[15] GAN H,NANDI S P,WALKER JR P L. Nature of the porosity in American coals. Fuel,1972,51(4):272-277.
[16] BRUNAUER S,EMMETT P H,TELLER E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society,1938,60(2):309-319.
[17] SING K S W,EVERETT D H,HAUL R A W,et al. Reporting physosorption data for gas/solid systems with special reference to the determination of surface area and porosity,IUPAC. Pure & Applied Chemistry,1985,57(4):603-619.
[18] BARRETT E P,JOYNER L G,HALENDA P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society,1951,73(1):373-380.
[19] 孙寅森,郭少斌.渝东南彭水地区龙马溪组页岩孔隙结构特征及吸附性能控制因素.海相油气地质,2018,23(1):63-74. SUN Y S,GUO S B. Pore structure of shale and controlling factors of adsorption performance of Longmaxi Formation in Pengshui area,southeast Chongqing. Marine Origin Petroleum Geology, 2018,23(1):63-74.
[20] 罗超,刘树根,罗志立,等.贵州丹寨南皋下寒武统牛蹄塘组黑色页岩孔隙结构特征.地质科技情报,2014,33(3):93-105. LUO C,LIU S G,LUO Z L,et al. Pore structure characteristics of black shale in the Lower Cambrian Niutitang Formation of Nangao section in Danzhai,Guizhou province. Geological Science & Technology Information,2014,33(3):93-105.
[21] 陈居凯,朱炎铭,崔兆帮,等.川南龙马溪组页岩孔隙结构综合表征及其分形特征.岩性油气藏,2018,30(1):55-62. CHEN J K,ZHU Y M,CUI Z B,et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin. Lithologic Reservoirs,2018,30(1):55-62.
[22] 杨巍,陈国俊,胡士骏,等.川南-黔北地区下古生界页岩孔隙发育特征.岩性油气藏,2015,27(4):47-52. YANG W,CHEN G J,HU S J,et al. Pore characteristics of shale of Lower Paleozoic in southern Sichuan-northern Guizhou. Lithologic Reservoirs,2015,27(4):47-52.
[23] 翟刚毅,包书景,王玉芳,等.古隆起边缘成藏模式与湖北宜昌页岩气重大发现.地球学报,2017,38(4):441-447. ZHAI G Y,BAO S J,WANG Y F,et al. Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang area,Hubei province. Acta Geoscientica Sinica,2017,38(4):441-447.
[24] 杨锐,何生,胡东风,等.焦石坝地区五峰组-龙马溪组页岩孔隙结构特征及其主控因素. 地质科技情报,2015,34(5):105-113. YANG R,HE S,HU D F,et al. Characteristics and the main controlling factors of micro-pore structure of the shale in Wufeng Formation-Longmaxi Formation in Jiaoshiba area. Geological Science & Technology Information,2015,34(5):105-113.
[25] 朱汉卿,贾爱林,位云生,等.基于氩气吸附的页岩纳米级孔隙结构特征.岩性油气藏,2018,30(2):77-84. ZHU H Q,JIA A L,WEI Y S,et al. Nanopore structure characteristics of shale based on Ar adsorption. Lithologic Reservoirs, 2018,30(2):77-84.
[26] ROSS D J K,BUSTIN R M. Shale gas potential of the lower Jurassic Gordondale member,northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology,2007,55(1):51-75.
[27] CHALMERS G R L,BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia,Canada. International Journal of Coal Geology,2007,70(1/3):223-239.
[28] 徐勇,胡士骏,陈国俊,等.鄂尔多斯盆地东南部延长组长7段页岩孔隙特征与吸附能力.岩性油气藏,2016,28(6):30-35. XU Y,HU S J,CHEN G J,et al. Pore characteristics and adsorption capacity of Chang 7 shale of Yanchang Formation in the southeastern Ordos Basin. Lithologic Reservoirs,2016,28(6):30-35.
[29] JI L M,ZHANG T W,MILLIKEN K L,et al. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry,2012,27(12):2533-2545.
[30] KROOSS B M,BERGEN F V,GENSTERBLUM Y,et al. Highpressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. International Journal of Coal Geology,2002,51(2):69-92.
[1] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[2] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[3] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[4] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[5] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[6] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[7] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[8] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[9] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[10] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[11] 魏全超, 李小佳, 李峰, 郝景宇, 邓双林, 吴娟, 邓宾, 王道军. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70.
[12] 梁小聪, 牛杏, 胡明毅, 黎洋, 胡忠贵, 蔡全升. 湘鄂西下寒武统牛蹄塘组黑色页岩发育特征及沉积环境[J]. 岩性油气藏, 2023, 35(4): 102-114.
[13] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[14] 肖玲, 陈曦, 雷宁, 易涛, 郭文杰. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93.
[15] 杨跃明, 张少敏, 金涛, 明盈, 郭蕊莹, 王兴志, 韩璐媛. 川南地区二叠系龙潭组页岩储层特征及勘探潜力[J]. 岩性油气藏, 2023, 35(1): 1-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .