岩性油气藏 ›› 2019, Vol. 31 ›› Issue (5): 52–60.doi: 10.12108/yxyqc.20190506

• 油气地质 • 上一篇    下一篇

陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力

陈相霖1,2, 郭天旭1,2, 石砥石1,2, 侯啓东3, 王超1,2   

  1. 1. 中国地质调查局 油气资源调查中心, 北京 100083;
    2. 中国地质调查局 非常规油气地质重点实验室, 北京 100029;
    3. 中国地质大学(北京)地球科学与资源学院, 北京 100083
  • 收稿日期:2018-11-27 修回日期:2019-02-06 出版日期:2019-09-21 发布日期:2019-09-16
  • 作者简介:陈相霖(1991-),男,硕士,主要从事页岩气地质研究与资源潜力评价方面的工作。地址:(100083)北京市海淀区北四环中路267号奥运大厦。Email:442620703@qq.com。
  • 基金资助:
    国家重大科技专项“大型油气田及煤层气开发”(编号:2016zx05034-002)、中国地质调查局项目“南方页岩气资源潜力评价”(编号:DD20160181)和“桂中—南盘江页岩气地质调查”(编号:DD20190088)联合资助

Pore structure characteristics and adsorption capacity of Niutitang Formation shale in southern Shaanxi

CHEN Xianglin1,2, GUO Tianxu1,2, SHI Dishi1,2, HOU Qidong3, WANG Chao1,2   

  1. 1. Oil and Gas Resources Survey Center, China Geological Survey, Beijing 100083, China;
    2. Key Laboratory of Unconventional Oil & Gas Geology, China Geological Survey, Beijing 100029, China;
    3. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2018-11-27 Revised:2019-02-06 Online:2019-09-21 Published:2019-09-16

摘要: 为揭示陕南地区下寒武统牛蹄塘组页岩孔隙结构特征及其吸附能力,采用场发射扫描电镜观察、有机地球化学分析、全岩X射线衍射、氮气吸附和等温吸附实验等方法,通过定性观察和定量表征相结合的方式,来研究该组页岩的孔隙结构类型,并探讨页岩孔隙结构和吸附能力的主控因素。结果表明:陕南地区牛蹄塘组页岩主要发育有机质孔、粒内孔、粒间孔和微裂缝等4种孔隙类型,页岩孔径为1.8~316.7 nm,BET比表面积为1.34~13.20 m2/g,平均值为6.83 m2/g,BJH吸附总孔体积为0.003~0.011 cm3/g,平均值为0.006 cm3/g;影响页岩孔隙发育的直接因素包括总有机碳含量和热演化成熟度,二者与孔隙体积和比表面积均呈正相关性;影响页岩孔隙发育的间接因素包括汉南古隆起周缘的构造运动和沉积环境,二者对牛蹄塘组页岩热演化成熟度、埋藏深度、厚度和岩性变化均具有较大影响,从而间接控制着页岩孔隙结构的发育特征;页岩吸附能力主要受有机碳含量、孔隙体积和比表面积等因素的影响,三者与甲烷吸附气量均呈正相关性。该研究结果对陕南地区寒武系页岩气资源潜力评价及选区评价均具有重要意义。

关键词: 孔隙结构, 吸附能力, 页岩气, 牛蹄塘组, 陕南地区

Abstract: In order to reveal the pore structure characteristics and adsorption capacity of rich organic shale of Cambrian Niutitang Formation in southern Shaanxi,a series of experimental testing techniques and methods such as field emission scanning electron microscopy,organic geochemistry,X-ray diffraction(XRD),nitrogen adsorption and isothermal adsorption experiment,were used to study the pore structure types by combining qualitative observation and quantitative characterization,and the main controlling factors of pore structure and adsorption capacity of shale were discussed. The results show that the main shale pore types of Niutitang Formation are organic pores,intragranular pores,intergranular pore and microfractures. The pore diameter is 1.8-316.7 nm, the BET specific surface area is 1.34-13.20 m2/g with an average value of 6.83 m2/g,the BJH adsorbed total pore volume is 0.003-0.011 mL/g with an average value of 0.006 mL/g. The direct factors affecting shale pore development are total organic carbon content and thermal maturity,which are positively correlated with pore volume and specific surface area. The indirect factors affecting shale pore development are tectonic movement and sedimentary environment around Hannan paleo-uplift and,which have great influences on thermal maturity,burial depth, thickness and lithologic changes of Niutitang Formation shale,thus indirectly control the development of shale pore structure. The adsorption capacity of shale is mainly affected by total organic carbon content,pore volume and specific surface area,which are positively correlated with methane adsorption volume. The research results are of great significance to the potential evaluation of Cambrian shale gas resources and the evaluation of selected areas in southern Shaanxi.

Key words: pore structure, adsorption capacity, shale gas, Niutitang Formation, southern Shaanxi

中图分类号: 

  • P618.13
[1] LOUCK R G,REED R M,RUPPEL S C,et al. Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research,2009,79(12):848-861.
[2] 何治亮,胡宗全,聂海宽,等.四川盆地五峰组-龙马溪组页岩气富集特征与"建造-改造"评价思路.天然气地球科学, 2017,28(5):724-733. HE Z L,HU Z Q,NIE H K,et al. Characterization of shale gas enrichment in the Wufeng Formation-Longmaxi Formation in the Sichuan Basin of China and evaluation of its geological construction-transformation evolution sequence. Journal of Natural Gas Geoscience,2017,28(5):724-733.
[3] 刘忠宝,冯动军,高波,等.上扬子地区下寒武统高演化页岩微观孔隙特征.天然气地球科学,2017,28(7):1096-1107. LIU Z B,FENG D J,GAO B,et al. Micropore characteristics of high thermal evolution shale in Lower Cambrian series in Upper Yangtze area. Natural Gas Geoscience,2017,28(7):1096-1107.
[4] 龚小平,唐洪明,赵峰,等.四川盆地龙马溪组页岩储层孔隙结构的定量表征.岩性油气藏,2016,28(3):48-57. GONG X P,TANG H M,ZHAO F,et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin. Lithologic Reservoirs,2016,28(3):48-57.
[5] 吴世祥,汤良杰,郭彤楼,等.米仓山与大巴山交汇区构造分区与油气分布.石油与天然气地质,2005,26(3):361-365. WU S X,TANG L J,GUO T L,et al. Structural zonation and oil/gas distribution in intersecting area of Micang and Daba mountains. Oil & Gas Geology,2005,26(3):361-365.
[6] 程俊,徐晓飞,张文峰,等.上扬子西北缘宁强湾牛蹄塘组有机地球化学特征.岩性油气藏,2017,29(1):21-26. CHENG J,XU X F,ZHANG W F,et al. Organic geochemical characteristics of Niutitang Formation in Ningqiang Bay,the northwestern margin of Upper Yangtze platform. Lithologic Reservoirs, 2017,29(1):21-26.
[7] 龚大兴,林金辉,唐云凤,等.上扬子地台北缘古生界海相烃源岩有机地球化学特征.岩性油气藏,2010,22(3):31-37. GONG D X,LIN J H,TANG Y F,et al. Organic geochemical characteristics of Paleozoic marine source rocks in northern margin of Upper Yangtze platform. Lithologic Reservoirs,2010,22(3):31-37.
[8] 叶玥豪,刘树根,孙玮,等.上扬子地区上震旦统-下志留统黑色页岩微孔隙特征. 成都理工大学学报(自然科学版), 2012,39(6):575-582. YE Y H,LIU S G,SUN W,et al. Micropore characteristics of Upper Sinian-Lower Silurian black shale in Upper Yangtze area of China. Journal of Chengdu University of Technology(Science & Technology Edition),2012,39(6):575-582.
[9] 康建威,林小兵,余谦,等.复杂构造背景区页岩气富集条件研究:以大巴山前缘地区为例.石油实验地质,2017,39(4):437-443. KANG J W,LIN X B,YU Q,et al. Shale gas enrichment conditions in complex geological structure areas:a case study in the front margin of Daba mountain. Petroleum Geology & Experiment,2017,39(4):437-443.
[10] 贾锦生,宋华颖,伊海生,等.米仓山-大巴山前缘古生界重点剖面烃源岩特征研究.天然气地球科学,2011,22(6):1046-1053. JIA J S,SONG H Y,YI H S,et al. Characteristic of Paleozoic hydrocarbon source rocks from key sections of frontal Micang shan-Daba. Natural Gas Geoscience,2011,22(6):1046-1053.
[11] 裴先治,李瑞保,丁仨平,等.陕南镇巴地区大巴山与米仓山构造交接关系.石油与天然气地质,2009,30(5):576-583. PEI X Z,LI R B,DING S P,et al. Tectonic intersection relationship between Dabashan and Micangshan in Zhenba area, southern Shaanxi province. Oil & Gas Geology,2009,30(5):576-583.
[12] 余谦,牟传龙,张海泉,等.上扬子北缘震旦纪-早古生代沉积演化与储层分布特征.岩石学报,2011,27(3):672-680. YU Q,MU C L,ZHANG H Q,et al. Sedimentary evolution and reservoir distribution of northern Upper Yangtze plate in SinianEarly Paleozoic. Acta Petrologica Sinica,2011,27(3):672-680.
[13] LOUCKS R G,REED R M,RUPPEL S C,et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin,2015, 96(6):1071-1098.
[14] CURTIS J B. Fractured shale-gas systems. AAPG Bulletin,2002, 86(11):1921-1938.
[15] GAN H,NANDI S P,WALKER JR P L. Nature of the porosity in American coals. Fuel,1972,51(4):272-277.
[16] BRUNAUER S,EMMETT P H,TELLER E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society,1938,60(2):309-319.
[17] SING K S W,EVERETT D H,HAUL R A W,et al. Reporting physosorption data for gas/solid systems with special reference to the determination of surface area and porosity,IUPAC. Pure & Applied Chemistry,1985,57(4):603-619.
[18] BARRETT E P,JOYNER L G,HALENDA P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society,1951,73(1):373-380.
[19] 孙寅森,郭少斌.渝东南彭水地区龙马溪组页岩孔隙结构特征及吸附性能控制因素.海相油气地质,2018,23(1):63-74. SUN Y S,GUO S B. Pore structure of shale and controlling factors of adsorption performance of Longmaxi Formation in Pengshui area,southeast Chongqing. Marine Origin Petroleum Geology, 2018,23(1):63-74.
[20] 罗超,刘树根,罗志立,等.贵州丹寨南皋下寒武统牛蹄塘组黑色页岩孔隙结构特征.地质科技情报,2014,33(3):93-105. LUO C,LIU S G,LUO Z L,et al. Pore structure characteristics of black shale in the Lower Cambrian Niutitang Formation of Nangao section in Danzhai,Guizhou province. Geological Science & Technology Information,2014,33(3):93-105.
[21] 陈居凯,朱炎铭,崔兆帮,等.川南龙马溪组页岩孔隙结构综合表征及其分形特征.岩性油气藏,2018,30(1):55-62. CHEN J K,ZHU Y M,CUI Z B,et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin. Lithologic Reservoirs,2018,30(1):55-62.
[22] 杨巍,陈国俊,胡士骏,等.川南-黔北地区下古生界页岩孔隙发育特征.岩性油气藏,2015,27(4):47-52. YANG W,CHEN G J,HU S J,et al. Pore characteristics of shale of Lower Paleozoic in southern Sichuan-northern Guizhou. Lithologic Reservoirs,2015,27(4):47-52.
[23] 翟刚毅,包书景,王玉芳,等.古隆起边缘成藏模式与湖北宜昌页岩气重大发现.地球学报,2017,38(4):441-447. ZHAI G Y,BAO S J,WANG Y F,et al. Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang area,Hubei province. Acta Geoscientica Sinica,2017,38(4):441-447.
[24] 杨锐,何生,胡东风,等.焦石坝地区五峰组-龙马溪组页岩孔隙结构特征及其主控因素. 地质科技情报,2015,34(5):105-113. YANG R,HE S,HU D F,et al. Characteristics and the main controlling factors of micro-pore structure of the shale in Wufeng Formation-Longmaxi Formation in Jiaoshiba area. Geological Science & Technology Information,2015,34(5):105-113.
[25] 朱汉卿,贾爱林,位云生,等.基于氩气吸附的页岩纳米级孔隙结构特征.岩性油气藏,2018,30(2):77-84. ZHU H Q,JIA A L,WEI Y S,et al. Nanopore structure characteristics of shale based on Ar adsorption. Lithologic Reservoirs, 2018,30(2):77-84.
[26] ROSS D J K,BUSTIN R M. Shale gas potential of the lower Jurassic Gordondale member,northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology,2007,55(1):51-75.
[27] CHALMERS G R L,BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia,Canada. International Journal of Coal Geology,2007,70(1/3):223-239.
[28] 徐勇,胡士骏,陈国俊,等.鄂尔多斯盆地东南部延长组长7段页岩孔隙特征与吸附能力.岩性油气藏,2016,28(6):30-35. XU Y,HU S J,CHEN G J,et al. Pore characteristics and adsorption capacity of Chang 7 shale of Yanchang Formation in the southeastern Ordos Basin. Lithologic Reservoirs,2016,28(6):30-35.
[29] JI L M,ZHANG T W,MILLIKEN K L,et al. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry,2012,27(12):2533-2545.
[30] KROOSS B M,BERGEN F V,GENSTERBLUM Y,et al. Highpressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. International Journal of Coal Geology,2002,51(2):69-92.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[3] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[4] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[5] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[6] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[7] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[8] 王朋飞, 金璨, 臧小鹏, 田黔宁, 刘国, 崔文娟. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏, 2020, 32(5): 46-53.
[9] 王朋, 孙灵辉, 王核, 李自安. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 63-72.
[10] 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101.
[11] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[12] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
[13] 陈明江, 程亮, 陆涛. Ahdeb油田Khasib油藏孔隙结构及其对注水开发的影响[J]. 岩性油气藏, 2020, 32(3): 133-143.
[14] 王登, 余江浩, 赵雪松, 陈威, 黄佳琪, 徐聪. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景[J]. 岩性油气藏, 2020, 32(1): 27-35.
[15] 宋明明, 韩淑乔, 董云鹏, 陈江, 万涛. 致密砂岩储层微观水驱油效率及其主控因素[J]. 岩性油气藏, 2020, 32(1): 135-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .