岩性油气藏 ›› 2020, Vol. 32 ›› Issue (2): 161–168.doi: 10.12108/yxyqc.20200218

• 石油工程 • 上一篇    下一篇

基于井中微地震监测方法的压裂效果评价——以吉林探区Y22井为例

赵超峰1, 贾振甲2, 田建涛1, 高荣锦3, 张伟1, 赵建宇1   

  1. 1. 中国石油集团东方地球物理勘探有限责任公司 辽河物探分公司, 辽宁 盘锦 124010;
    2. 中国石油吉林油田公司 非常规资源开发公司, 吉林 松原 138000;
    3. 中国石油辽河油田分公司 勘探开发研究院, 辽宁 盘锦 124010
  • 收稿日期:2019-08-21 修回日期:2019-10-29 出版日期:2020-03-21 发布日期:2020-01-19
  • 作者简介:赵超峰(1991-),男,工程师,主要从事微地震压裂监测和井中地震技术方面的研究工作。地址:(124010)辽宁省盘锦市兴隆台区物探公司研究所。Email:1120201698@qq.com。

Fracturing effect evaluation based on borehole microseismic monitoring method: a case study from well Y22 in Jilin exploration area

ZHAO Chaofeng1, JIA Zhenjia2, TIAN Jiantao1, GAO Rongjin3, ZHANG Wei1, ZHAO Jianyu1   

  1. 1. Liaohe Geophysical Exploration Company, Bureau of Geophysical Prospecting INC., CNPC, Panjin 124010, Liaoning, China;
    2. Unconditional Resource Development Corporation, PetroChina Jilin Oilfield Company, Songyuan 138000, Jilin, China;
    3. Research Institute of Exploration and Development, PetroChina Liaohe Oilfield Company, Panjin 124010, Liaoning, China
  • Received:2019-08-21 Revised:2019-10-29 Online:2020-03-21 Published:2020-01-19

摘要: 储层水力压裂效果评价对指导油气田精细开发具有重要意义,为准确评价压裂效果,提出了一套井中微地震监测压裂效果评价方法,在准确定位微地震事件基础上,分析微地震事件时空分布特征,剔除无效事件,利用有效事件定量描述缝网长、宽、高、走向、改造体积等,再结合储层性质、压裂施工参数等解释裂缝产生的原因,客观地评价压裂效果。该方法在吉林探区Y22井的应用结果表明:压裂裂缝走向与其周边小断层或天然裂隙走向一致;测井解释成果和微地震监测结果具有相关性,测井解释好的压裂段储层改造体积相对较大、微地震事件数量相对较多、裂缝复杂度更高;压裂过程中产生的离散微地震事件为压力传导造成低应力区应力释放产生的事件,不是由压裂窜层造成;Y22井周边的生产井因前期压裂改造和后期油气排采引起的地层能量亏空,造成了压裂裂缝的不对称性。该研究成果在解释微地震事件时空分布特征,提高对压裂和储层性质认识,客观、准确地评价压裂效果等方面具有指导作用。

关键词: 微地震监测, 压裂评价, 储层特征, 压裂参数, 油田开发, 不对称性

Abstract: Evaluation of reservoir hydraulic fracturing effect is of great significance for guiding the fine development of oil and gas fields. In order to accurately evaluate the fracturing effect,a fracturing effect evaluation method of microseismic monitoring in wells was proposed. On the basis of accurately locating microseismic events,the temporal and spatial distribution characteristics of microseismic events were analyzed,ineffective microseismic events were eliminated,the length,width,height,trend,reconstruction volume of fracture network were quantitatively described by using effective events,and fracturing effect was objectively evaluated by explaining the causes of fractures in combination with reservoir properties and fracturing operation parameters. The application results of well Y22 in Jilin exploration area show that the fracturing fracture strike is consistent with that of surrounding small faults or natural fissures. The results of log interpretation and microseismic monitoring are correlated,and the fractured reservoir with better log interpretation has relatively greater fracturing volume,more microseismic events and higher fracture complexity. The discrete microseismic events during fracturing are irrelevant to the fracture channeling layer but result from stress release in the low stress area that caused by pressure transmission. The formation energy deficit of other wells around well Y22 caused by primary fracturing and later production of oil and gas results in the asymmetry of the fracturing fractures in well Y22. The research results can be used to explain the temporal and spatial distribution characteristics of microseismic events,improve the understanding of fracturing and reservoir properties, and evaluate the fracturing effect objectively and accurately.

Key words: microseismic monitoring, fracturing evaluation, reservoir characteristics, fracturing parameters, oil field development, asymmetry

中图分类号: 

  • TE357.1
[1] 王维波, 周瑶琪,春兰. 地面微地震监测SET震源定位特性研究. 中国石油大学学报(自然科学版), 2012, 36(5):45-50. WANG W B, ZHOU Y Q, CHUN L. Characteristics of source localization by seismic emission tomgraphy for surface based on microseismic monitoring. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(5):45-50.
[2] 李大军, 杨晓, 王小兰, 等. 四川盆地W地区龙马溪组页岩气压裂效果评估和产能预测研究. 石油物探, 2017, 56(5):735-745. LI D J, YANG X, WANG X L, et al. Estimating the fracturing effect and production capacity of the Longmaxi Formation of the Lower Silurian in area W, Sichuan Basin. Geophysical Prospecting for Petroleum, 2017, 56(5):735-745.
[3] 刁瑞, 吴国忱, 崔庆辉, 等. 地面阵列式微地震监测关键技术研究. 岩性油气藏, 2017, 29(1):104-109. DIAO R, WU G C, CUI Q H, et al. Key techniques for surface array microseismic monitoring. Lithologic Reservoirs, 2017, 29(1):104-109.
[4] 李宏, 杨心超, 朱海波, 等. 水力压裂微地震震源定位与震源机制联合反演研究. 石油物探, 2018, 57(2):312-320. LI H, YANG X C, ZHU H B, et al. Joint inversion of source location and microseismic focal mechanism. Geophysical Prospecting for Petroleum, 2018, 57(2):312-320.
[5] 赵炜, 辛维, 毛中华, 等. 利用单井微地震波形能量反演震源机制. 石油地球物理勘探, 2018, 53(5):945-953. ZHAO W, XIN W, MAO Z H, et al. Focal mechanism inversion with single-well microseismic wave energy. Oil Geophysical Prospecting, 2018, 53(5):945-953.
[6] 翟文宝, 李军, 周英操, 等. 基于测井资料的页岩储层可压裂性评价新方法. 岩性油气藏, 2018, 30(3):112-123. ZHAI W B, LI J, ZHOU Y C, et al. New evaluation method of shale reservoir fracability based on logging data. Lithologic Reservoirs, 2018, 30(3):112-123.
[7] 张洪, 孟选刚, 邵长金, 等. 水平压裂裂缝形成机理及监测:以七里村油田为例. 岩性油气藏, 2018, 30(5):138-145. ZHANG H, MENG X G, SHAO C J, et al. Forming mechanism and monitoring of horizontal hydraulic fracture:a case from Qilicun oilfield. Lithologic Reservoirs, 2018, 30(5):138-145.
[8] 李政, 常旭, 姚振兴, 等. 微地震方法的裂缝监测与储层评价. 地球物理学报, 2019, 62(2):707-719. LI Z, CHANG X, YAO Z X, et al. Fracture monitoring and reservoir evaluation by micro-seismic method. Chinese Journal of Geophysics, 2019, 62(2):707-719.
[9] 卞晓冰, 侯磊, 蒋廷学, 等. 深层页岩裂缝形态影响因素. 岩性油气藏, 2019, 31(6):161-168. BIAN X B, HOU L, JIANG T X, et al. Influencing factors of fracture geometry in deep shale gas wells. Lithologic Reservoirs, 2019, 31(6):161-168.
[10] 巫芙蓉, 闫媛媛, 尹陈. 页岩气微地震压裂实时监测技术:以四川盆地蜀南地区为例. 天然气工业, 2016, 36(11):46-50. WU F R, YAN Y Y, YIN C. Real-time microseismic monitoring technology for hydraulic fracturing in shale gas reservoirs:a case study from the Southern Sichuan Basin. Natural Gas Industry, 2016, 36(11):46-50.
[11] 陈新安. 条带曲率裂缝发育区页岩气井裂缝扩展规律:以涪陵页岩气田焦石坝西南区块为例. 断块油气田, 2018, 25(6):742-746. CHEN X A. Fracture propagation law for shale gas well in stripcurvature-crack development area:a case study of Southwest Jiaoshiba Block in Fuling shale gas field. Fault-Block Oil and Gas Field, 2018, 25(6):742-746.
[12] 毕曼, 杨映洲, 马占国, 等. 混合压裂在苏里格致密气藏水平井的应用. 断块油气田, 2014, 21(5):644-647. BI M, YANG Y Z, MA Z G, et al. Application of hybrid fracturing in horizontal well of tight gas reservoir in Sulige Gas Field. Fault-Block Oil and Gas Field, 2014, 21(5):644-647.
[13] 赵超峰, 张伟, 田建涛, 等. 微地震事件解释实例. 石油地球物理勘探, 2018, 53(4):770-777. ZHAO C F, ZHANG W, TIAN J T, et al. Interpretation examples of microseismic events. Oil Geophysical Prospecting, 2018, 53(4):770-777.
[14] 赵争光, 杨瑞召, 孙志明, 等. 储层岩性对水力裂缝延伸的影响. 地球物理学进展, 2014, 29(2):885-888. ZHAO Z G, YANG R Z, SUN Z M, et al. Influence of reservoir lithology on hydraulic fracture propagation. Progress in Geophysics, 2014, 29(2):885-888.
[15] 杨瑞召, 赵争光, 彭维军, 等. 三维地震属性及微地震数据在致密砂岩气藏开发中的综合应用. 应用地球物理, 2013, 10(2):157-169. YANG R Z, ZHAO Z G, PENG W J, et al. Integrated application of 3 D seismic and microseismic data in the development of tight gas reservoirs. Applied Geophysics, 2013, 10(2):157-169.
[16] 马新仿, 李宁, 尹丛彬, 等. 页岩水力裂缝扩展形态与声发射解释:以四川盆地志留系龙马溪组页岩为例. 石油勘探与开发, 2017, 44(6):974-981. MA X F, LI N, YIN C B, et al. Hydraulic fracture propagation geometry and acoustic emission interpretation:a case study of Silurian Longmaxi Formation shale in Sichuan Basin, SW China. Petroleum Exploration and Development, 2017, 44(6):974-981.
[17] MAXWELL S C, NORTON M. Enhancing shale gas reservoir characterization using hydraulic fracture microseismic data. First Break, 2012, 30(1):95-101.
[18] REFUNJOL X E, MARFURT K J, CALVEZ J L. Inversion and attribute-assisted hydraulically induced microseismic fracture characterization in the North Texas Barnett Shale. The Leading Edge, 2011, 30(3):292-299.
[19] 田建涛, 赵超峰, 张伟, 等. 水力压裂井中监测方法不对称压裂裂缝分析. 石油物探, 2019, 58(4):563-571. TIAN J T, ZHAO C F, ZHANG W, et al. Analysis of asymmetric hydraulic fracture for borehole microseismic monitoring. Geophysical Prospecting for Petroleum, 2019, 58(4):563-571.
[20] 尹陈, 贺振华, 李亚林, 等. 基于微震特性的相对震级技术研究及应用. 地球物理学报, 2015, 58(6):2210-2220. YIN C, HE Z H, LI Y L, et al. Research and application of the relative magnitude technique based on microseism. Chinese Journal of Geophysics, 2015, 58(6):2210-2220.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 李慧莉, 尤东华, 李建交, 谭广辉, 刘士林. 麦盖提斜坡北新1井吐依洛克组角砾岩储层特征[J]. 岩性油气藏, 2021, 33(2): 26-35.
[3] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[4] 李祖兵, 崔俊峰, 宋舜尧, 成亚斌, 卢异, 陈岑. 黄骅坳陷北大港潜山中生界碎屑岩储层特征及成因机理[J]. 岩性油气藏, 2021, 33(2): 81-92.
[5] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
[6] 袁纯, 张惠良, 王波. 大型辫状河三角洲砂体构型与储层特征——以库车坳陷北部阿合组为例[J]. 岩性油气藏, 2020, 32(6): 73-84.
[7] 刘博, 徐刚, 纪拥军, 魏路路, 梁雪莉, 何金玉. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏, 2020, 32(6): 172-180.
[8] 庞小军, 王清斌, 解婷, 赵梦, 冯冲. 黄河口凹陷北缘古近系物源及其对优质储层的控制[J]. 岩性油气藏, 2020, 32(2): 1-13.
[9] 田清华, 刘俊, 张晨, 王文胜, 黄丹. 苏里格气田下古生界储层特征及主控因素[J]. 岩性油气藏, 2020, 32(2): 33-42.
[10] 李宏涛, 马立元, 史云清, 胡向阳, 高君, 李浩. 基于井-震结合的水下分流河道砂岩储层展布分析与评价——以什邡气藏JP35砂组为例[J]. 岩性油气藏, 2020, 32(2): 78-89.
[11] 郭艳琴, 何子琼, 郭彬程, 惠磊, 蔡志成, 王美霞, 李文厚, 李百强. 苏里格气田东南部盒8段致密砂岩储层特征及评价[J]. 岩性油气藏, 2019, 31(5): 1-11.
[12] 王桂成, 曹聪. 鄂尔多斯盆地下寺湾油田长3油层组储层特征及控藏机理[J]. 岩性油气藏, 2019, 31(3): 1-9.
[13] 王良军. 川北地区灯影组四段优质储层特征及控制因素[J]. 岩性油气藏, 2019, 31(2): 35-45.
[14] 刘雁婷. 川东北地区长兴组—飞仙关组储层特征[J]. 岩性油气藏, 2019, 31(1): 78-86.
[15] 姚泾利, 李勇, 陈世加, 邱雯, 苏恺明, 何清波. 定边—吴起地区长61储层特征及其对含油性的控制[J]. 岩性油气藏, 2018, 30(4): 56-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[4] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[5] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[6] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[7] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[8] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[9] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .
[10] 王大兴,于波,张盟勃,宋琛. 地震叠前分析技术在子洲气田的研究与应用[J]. 岩性油气藏, 2008, 20(1): 95 -100 .