岩性油气藏 ›› 2020, Vol. 32 ›› Issue (5): 102–112.doi: 10.12108/yxyqc.20200511

• 油气地质 • 上一篇    下一篇

玛湖凹陷二叠系下乌尔禾组沸石成因及溶蚀机制

雷海艳1,2, 樊顺3, 鲜本忠4, 孟颖1,2, 杨红霞1,2, 晏奇5, 齐婧1,2   

  1. 1. 中国石油天然气集团有限公司砾岩油气藏勘探开发重点实验室, 新疆 克拉玛依 834000;
    2. 中国石油新疆油田分公司 实验检测研究院, 新疆 克拉玛依 834000;
    3. 中国石油新疆油田分公司百口泉采油厂, 新疆 克拉玛依 834000;
    4. 中国石油大学 (北京)地球科学学院, 北京 102249;
    5. 中国石油新疆油田分公司 勘探开发研究院, 新疆 克拉玛依 834000
  • 收稿日期:2020-03-23 修回日期:2020-05-27 出版日期:2020-10-01 发布日期:2020-08-08
  • 作者简介:雷海艳(1987-),女,硕士,工程师,主要从事沉积储层方面的研究工作。地址:(834000)新疆克拉玛依市准噶尔路29号实验检测研究院3号楼。Email:lhy1987@petrochina.com.cn。
  • 基金资助:
    国家自然科学基金“构造-物源供给对湖相断陷盆地异重流沉积的控制机理:以东营凹陷沙河街组为例”(编号:41872113)和国家青年科学基金“基于滩坝沉积信息的古风场的定量表征:以渤海湾盆地东营凹陷始新统为例”(编号:41702104)联合资助

Genesis and corrosion mechanism of zeolite of Lower Urhe Formation of Permian in Mahu Depression

LEI Haiyan1,2, FAN Shun3, XIAN Benzhong4, MENG Ying1,2, YANG Hongxia1,2, YANG Qi5, QI Jing1,2   

  1. 1. Key Laboratory of Conglomerate Reservoir Exploration and Development, CNPC, Karamay 834000, Xinjiang, China;
    2. Research Institute of Experiment and Detection, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    3. Baikouquan Oil Production Plant, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    4. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    5. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China
  • Received:2020-03-23 Revised:2020-05-27 Online:2020-10-01 Published:2020-08-08

摘要: 为研究玛湖凹陷二叠系下乌尔禾组沸石成因及溶蚀机制,开展了岩石薄片鉴定、荧光分析、场发射扫描电子显微镜观察、电子探针分析、能谱分析和包裹体测试。结果表明:①研究区沸石族矿物以浊沸石为主,片沸石次之,偶见方沸石、斜发沸石和辉沸石,沸石既有高温成因类型,也有低温成因类型。②沸石成因主要包括2类:早成岩期以火山物质蚀变为主,该类沸石胶结的岩心多疏松易散;晚成岩期以孔隙水结晶为主,岩心多致密。片沸石、方沸石、斜发沸石和辉沸石成因以凝灰质的蚀变为主,浊沸石成因既有凝灰质蚀变,又包括孔隙水结晶成因。③平面上,沸石类型及含量分布特征受控于沉积相带,溶蚀差异则受控于有机酸的供给。浊沸石多发育于扇三角洲前缘厚层粗粒砂砾岩中,片沸石多发育于扇三角洲平原前端富含凝灰质砾岩中。在接近深水区烃源岩发育区的三角洲前缘部位或裂缝发育带附近的砂砾岩储层中,浊沸石溶蚀程度高,优质储层发育。该研究成果对含沸石族储层研究和玛湖凹陷二叠系下乌尔禾组油气勘探均具有指导作用。

关键词: 沸石族矿物, 溶蚀孔, 凝灰质蚀变, 孔隙水结晶, 下乌尔禾组, 玛湖凹陷

Abstract: In order to study the genesis and dissolution mechanism of zeolites in the Lower Urhe Formation of Permian in Mahu Depression,thin section identification,fluorescence analysis,field emission scanning electron microscopy,electron probe analysis,energy spectrum analysis and inclusion test were carried out. The results show that:(1)The mainly zeolite group minerals in the study area are turbidite,followed by heulandite,analcite,clinoptilolite and zeolites. The zeolites have both high-temperature and low-temperature genesis types.(2)The genesis of zeolites mainly includes two types:in the early diagenetic stage,it is dominated by alteration of volcanic materials,and the cores cemented by zeolites are mostly loose and easy to disperse;in the late diagenetic stage, it is dominated by pore water crystallization,and the cores are mostly dense. Heulandite,analcite,clinoptilolite and pyroxene are mainly caused by tuffaceous alteration,while turbidites are caused by tuffaceous alteration and pore water crystallization.(3)On the plane,the type and content distribution of zeolites are controlled by the sedimentary facies,while the dissolution difference is controlled by the supply of organic acids. Most of the laumontite are developed in the thick coarse-grained glutenite of the fan delta front,and most of the heulandite is developed in the tuffaceous conglomerate in the front of the fan delta plain. In the glutenite reservoir in delta front or near fracture development zone near the deep-water source rock development area,the turbidite has high dissolution degree and high-quality reservoir development. The research results can be used to guide the study of zeolites bearing reservoirs and the exploration of oil and gas in the Lower Urhe Formation of Permian in Mahu Depression.

Key words: zeolite group minerals, dissolved pore, tuffaceous alteration, pore water crystallization, Lower Urhe Formation, Mahu Depression

中图分类号: 

  • TE122.1
[1] HAY R L. Zeolites and zeolites reactions in sedimentary. New York:Geological Society of America, 1966:1-85.
[2] MONCURE G K, SURDAM R C, MCKAGUE H L. Zeolite diagenesis below Pahute Mesa, Nevada Test Site. Clays Clay Miner, 1981, 29:385-396.
[3] 张立飞. 陕北鄂尔多斯盆地埋藏变质作用研究. 地质学报, 1992, 66(4):339-351. ZHANG L F. Burial metamorphism of the Ordos Basin in northern Shaanxi. Acta Geologica Sinica, 1992, 66(4):339-351.
[4] 张立飞. 陕北三叠系延长统浊沸石的成因及形成条件的理论计算. 岩石学报, 1992, 8(2):145-153. ZHANG L F. Origin of laumontite and condition for its formation in Triassic Yanchang Series,north Shaanxi. Acta Petrologica Sinica, 1992, 8(2):145-153.
[5] 朱国华. 陕北延长统砂体成岩作用与油气富集的关系. 石油勘探与开发, 1985(6):1-9. ZHU G H. Relations between the accumulation of hydrocarbons and the diagenesis of Yanchang sandbodies in Shaanxi province. Petroleum Exploration and Development, 1985(6):1-9.
[6] 朱国华. 陕北浊沸石次生孔隙砂体的形成与油气关系. 石油学报,1985(6):1-8. ZHU G H. Formation of laumontite sandbodies with secondary porosity and their relationship with hydrocarbons. Acta Petrolei Sinica, 1985(6):1-8.
[7] 朱世发, 朱筱敏, 王绪龙, 等. 准噶尔盆地西北缘二叠系沸石矿物成岩作用及对油气意义. 中国科学:地球科学, 2011, 41(11):1602-1612. ZHU S F, ZHU X M, WANG X L, et al. Zeolite diagenesis and its control on petroleum reservoir quality of Permian in northwestern margin of Junggar Basin. Science China:Earth Science, 2011, 41(11):1602-1612.
[8] 朱世发, 朱筱敏, 刘学超, 等. 油气储层火山物质蚀变产物及其对储集空间的影响:以准噶尔盆地克-夏地区下二叠统为例. 石油学报, 2014, 35(2):276-285. ZHU S F, ZHU X M, LIU X C, et al. Alteration products of volcanic materials and their influence on reservoir space in hydrocarbon reservoirs:Evidence from Lower Permian strata in KeXia region, Junggar Basin. Acta Petrolei Sinica, 2014, 35(2):276-285.
[9] 孙玉善, 刘新年, 张艳秋, 等. 中国西部地区方沸石胶结相与碎屑岩次生优质储集层形成机制. 古地理学报, 2014, 16(4):517-526. SUN Y S, LIU X N, ZHANG Y Q, et al. Analcite cementation facies and forming mechanism of high-quality secondary clastic rock reservoirs in western China. Journal of Palaeogeography(Chinese Edition), 2014, 16(4):517-526.
[10] 李佳思, 付磊, 张金龙, 等. 准噶尔盆地乌夏地区中上二叠统碎屑岩成岩作用及次生孔隙演化. 岩性油气藏, 2019, 31(6):54-66. LI J S, FU L, ZHANG J L, et al. Diagenesis and secondary pore evolution of Middle Upper Permian clastic rocks in Wuxia area, Junggar Basin. Lithologic Reservoirs, 2019, 31(6):54-66.
[11] 杨晓萍, 张宝民, 雷振宇, 等. 含油气盆地中浊沸石的形成与分布及其对油气勘探的意义. 中国石油勘探, 2006, 11(2):33-38. YANG X P, ZHANG B M, LEI Z Y, et al. Formation and distribution of laumontite cement in petroliferous basin and its significance for oil-gas exploration. China Petroleum Exploration, 2006, 11(2):33-38.
[12] 杨晓萍, 裘怿楠. 鄂尔多斯盆地上三叠统延长组浊沸石的形成机理、分布规律与油气关系. 沉积学报, 2002, 20(4):628-632. YANG X P, QIU Y N. Formation process and distribution of laumontite in Yanchang Formation(Upper Triassic)of Ordos Basin. Acta Sedimentologica Sinica, 2002, 20(4):628-632.
[13] 叶博, 梁晓伟, 牛小兵, 等. 鄂尔多斯盆地华庆地区三叠系长9砂岩成岩相研究. 西安科技大学学报, 2013, 33(3):298-306. YE B, LIANG X W, NIU X B, et al. Diagenetic facies of Chang 9 sandstone of Triassic in Huaqing area of Ordos Basin. Journal of Xi'an University of Science and Technology, 2013, 33(3):298-306.
[14] 单祥, 郭华军, 郭旭光, 等. 低渗透储层孔隙结构影响因素及其定量评价:以准噶尔盆地金龙地区二叠系上乌尔禾组二段为例. 吉林大学学报(地球科学版), 2019, 49(3):637-649. SHAN X, GUO H J, GUO X G, et al. Influencing factors and quantitative assessment of pore structure in low permeability reservoir:a case study of 2nd member of Permian Upper Urhe Formation in Jinlong area, Junggar Basin. Journal of Jilin University(Earth Science Edition), 2019, 49(3):637-649.
[15] CHIPERA S J, GOFF F, GOFF C J, et al. Zeolitization of intracaldera sediments and rhyolitic rocks in the 1.25 Ma lake of Valles Caldera, New Mexico, USA. Journal of Volcanology & Geothermal Research, 2008, 178(2):317-330.
[16] NOH J H,BOLES J R. Origin of zeolite cements in the Miocene sandstones, North Tejon oil fields, California. Journal of Sedimentary Petrology, 1993, 63(2):248-260.
[17] WOPFNER H, MARKWORT S, SEMKIWA P M. Early diagenetic laumontite in the Lower Triassic Manda Beds of the Ruhuhu Basin, Southern Tanzania. Journal of Sedimentary Petrology, 1991, 61(1):65-72.
[18] HORNE R R. Authigenic prehnite,laumontite and chlorite in the Lower Cretaceous sediments of south-eastern Alexander Island. British Antarctic Survey Bulletin, 1968, 18:1-10
[19] 杨晓萍, 张保民, 陶士振, 等. 四川盆地侏罗系沙溪庙组浊沸石特征及油气勘探意义. 石油勘探与开发, 2005, 32(3):37-40. YANG X P, ZHANG B M, TAO S Z, et al. Laumontite and its significance for petroleum exploration in Jurassic Shaximiao reservoir, Sichuan Basin. Petroleum Exploration and Development, 2005, 32(3):37-40.
[20] 李振华, 邱隆伟, 师政, 等. 准噶尔盆地中拐地区佳二段沸石类矿物成岩作用及其对油气成藏的意义. 中国石油大学学报(自然科学版), 2014, 38(1):1-7. LI Z H, QIU L W, SHI Z, et al. Diagenesis zeolite minerals and its significance for hydrocarbon accumulation in the second member of Jiamuhe Formation of Zhongguai area, Junggar Basin. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(1):1-7.
[21] 晏奇, 雷海艳, 鲜本忠, 等. 母岩性质对砾岩储层中自生绿泥石发育的影响及油气储层意义:以准噶尔盆地玛湖凹陷玛北地区下乌尔禾组为例. 沉积学报, 2020, 38(2):367-378. YAN Q, LEI H Y, XIAN B Z, et al. Influence of source rock properties on the development of authigenic chlorite in conglomerate reservoirs and its significance for oil and gas reservoirs:a case study from the Lower Urhe Formation in the Mahu Depression, Junggar Basin. Acta Sedimentologica Sinica, 2020, 38(2):367-378.
[22] 杨红霞, 王剑, 田雨铜, 等. 玛湖凹陷斜坡区下乌尔禾组沸石类矿物形成机理. 新疆石油地质, 2019, 40(6):111-118. YANG H X, WANG J, TIAN Y T, et al. Forming mechanism of zeolites in Lower Urhe Formation in slope area of Mahu Depression. Xinjiang Petroleum Geology, 2019, 40(6):111-118.
[23] 孟元林, 梁洪涛, 魏巍, 等. 浊沸石溶蚀过程的热力学计算与次生孔隙发育带预测:以徐家围子断陷深层为例. 沉积学报, 2013, 31(3):509-515. MENG Y L, LIANG H T, WEI W, et al. Thermodynamic calculations of the laumontite dissolution and prediction of secondary porosity zones:a case study of horizon of Xujiaweizi Fault Depression. Acta Sedimentologica Sinica, 2013, 31(3):509-515.
[24] SURDAM R C, CROSSEY L J, HAGEN E S, et al. Organicinorganic and sandstone diageneses. AAPG Bulletin, 1989, 73(1):1-23.
[25] SURDAM R C, CROSSEY L J, HAGEN E S, et al. Organicinorganic and sandstone diageneses. AAPG Bulletin, 1989, 73(1):1-23.
[26] 黄思静, 张萌, 朱世全, 等. 砂岩孔隙成因对孔隙度/渗透率关系的控制作用:以鄂尔多斯盆地陇东地区三叠系延长组为例. 成都理工大学学报(自然科学版), 2004, 31(6):648-653. HUANG S J, ZHANG M, ZHU S Q, et al. Control of origin of pores over relationship of porosity to permeability in sandstone reservoir:a case study from Yangchang sandstone of Triassic of eastern Gansu,Ordos Basin. Journal of Chengdu University of Technology(Science & Technology Edition), 2004, 31(6):648-653.
[27] HEYDARI E, WADE W J. Massive recrystallization of lowMg calcite at high temperatures in hydrocarbon source rocks:Implications for organic acids as factors in diagenesis. AAPG Bulletin, 2002, 86(7):1285-1303.
[28] 刘曦翔, 张哨楠, 杨鹏, 等. 龙凤山地区营城组深层优质储层形成机理. 岩性油气藏, 2017, 29(2):117-124. LIU X X, ZHANG S N, YANG P, et al. Formation mechanism of deep high-quality reservoirs of Yingcheng Formation in Longfengshan area,Songliao Basin. Lithologic Reservoirs, 2017, 29(2):117-124.
[1] 马永平, 张献文, 朱卡, 王国栋, 潘树新, 黄林军, 张寒, 关新. 玛湖凹陷二叠系上乌尔禾组扇三角洲沉积特征及控制因素[J]. 岩性油气藏, 2021, 33(1): 57-70.
[2] 陈静, 陈军, 李卉, 努尔艾力·扎曼. 准噶尔盆地玛中地区二叠系—三叠系叠合成藏特征及主控因素[J]. 岩性油气藏, 2021, 33(1): 71-80.
[3] 陈更新, 王建功, 杜斌山, 刘应如, 李艳丽, 杨会洁, 李志明, 俞晓峰. 柴达木盆地尖北地区裂缝性基岩气藏储层特征[J]. 岩性油气藏, 2020, 32(4): 36-47.
[4] 胡潇, 曲永强, 胡素云, 潘建国, 尹路, 许多年, 滕团余, 王斌. 玛湖凹陷斜坡区浅层油气地质条件及勘探潜力[J]. 岩性油气藏, 2020, 32(2): 67-77.
[5] 况晏, 司马立强, 瞿建华, 温丹妮, 陈猛, 吴丰. 致密砂砾岩储层孔隙结构影响因素及定量评价——以玛湖凹陷玛131井区三叠系百口泉组为例[J]. 岩性油气藏, 2017, 29(4): 91-100.
[6] 闫林, 冉启全, 高阳, 陈福利, 王少军, 李崇飞. 吉木萨尔凹陷芦草沟组致密油储层溶蚀孔隙特征及成因机理[J]. 岩性油气藏, 2017, 29(3): 27-33.
[7] 李 兴,张立强,施 辉,郑一丁 . 准噶尔盆地玛湖凹陷百口泉组沉积古环境分析——— 以玛 18 井为例[J]. 岩性油气藏, 2016, 28(2): 80-85.
[8] 庞德新. 砂砾岩储层成因差异及其对储集物性的控制效应----以玛湖凹陷玛 2 井区下乌尔禾组为例[J]. 岩性油气藏, 2015, 27(5): 149-154.
[9] 张有平,盛世锋,高祥录. 玛湖凹陷玛 2 井区下乌尔禾组扇三角洲沉积及有利储层分布[J]. 岩性油气藏, 2015, 27(5): 204-210.
[10] 刘俊州,孙赞东,刘正涛,孙永洋,董 宁,夏红敏. 叠前同时反演在碳酸盐岩储层流体识别中的应用[J]. 岩性油气藏, 2015, 27(1): 102-107.
[11] 唐照星,曹自成,汪新文,沙旭光. 塔里木盆地古城墟隆起鹰山组内幕储层特征及影响因素[J]. 岩性油气藏, 2013, 25(4): 44-49.
[12] 谭开俊,张 帆,赵应成,潘建国,尹 路. 准噶尔盆地西北缘火山岩溶蚀孔隙特征及成因机制[J]. 岩性油气藏, 2010, 22(3): 22-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .