岩性油气藏 ›› 2022, Vol. 34 ›› Issue (3): 154–163.doi: 10.12108/yxyqc.20220314

• 地质勘探 • 上一篇    下一篇

四川盆地东北部三叠系飞三段沉积特征及油气地质意义

张本健1, 徐唱1, 徐亮1, 周刚1, 丁熊2   

  1. 1. 中国石油西南油气田分公司 勘探开发研究院, 成都 610000;
    2. 西南石油大学 地球科学与技术学院, 成都 610500
  • 收稿日期:2022-03-23 修回日期:2022-04-01 出版日期:2022-05-01 发布日期:2022-05-12
  • 第一作者:张本健(1980-),男,博士,高级工程师,主要从事地质勘探的管理与研究工作。地址:(610000)四川省成都市高新区天府大道北段12号。Email:zbjian@petrochina.com.cn
  • 通信作者: 丁熊(1981-),男,博士(后),副教授,主要从事储层地质方面的研究与教学工作。Email:dingxiong_2007@126.com。
  • 基金资助:
    中国石油西南油气田分公司科研项目“开江—梁平海槽南段飞仙关期构造-沉积特征及有利勘探区带评价”(编号:JS2021-088)资助

Sedimentary characteristics and petroleum geological significance of the third member of Triassic Feixianguan Formation in northeastern Sichuan Basin

ZHANG Benjian1, XU Chang1, XU Liang1, ZHOU Gang1, DING Xiong2   

  1. 1. Research Institute of Exploration and Development, PetroChina Southwest Oil and Gas Field Company, Chengdu 610000, China;
    2. School of Geosciences and Technology, Southwest Petroleum University, Chengdu 610500, China
  • Received:2022-03-23 Revised:2022-04-01 Online:2022-05-01 Published:2022-05-12

摘要: 近年来,四川盆地东北部三叠系飞三段天然气勘探持续获得新发现。通过钻井岩心观察、测井解释、相标志鉴定和颗粒岩优势相分析,系统研究了四川盆地东北部三叠系飞三段沉积特征及油气地质意义。研究结果表明:①研究区飞三段主要发育开阔台地和局限—蒸发台地,可进一步识别出台内滩、滩间海、潮坪和瀉湖等4种沉积亚相。②台内滩以颗粒岩沉积为主,可进一步分为鲕滩微相和生屑滩微相,鲕滩形成于开阔台地或局限—蒸发台地内部微地貌高地,生屑滩形成于开阔台地,两者沉积水体能量高,均具有向上变粗的逆粒序特征。③滩间海和瀉湖主要发育于台地内部较低洼地区,沉积环境能量低,可进一步划分为灰质滩间海(灰质瀉湖)、云质瀉湖微相,属于半局限—局限滩间海(瀉湖)范畴。潮坪发育于台地内部平均海平面附近,发育于多级次海平面下降晚期,是沉积水体变浅和水动力变弱的沉积响应,可进一步划分为膏坪微相和云坪微相。④P6—L1—L5井区东北部颗粒岩厚度大于15m,膏岩厚度为15~20m,为研究区飞三段天然气藏勘探的重点区域。

关键词: 沉积特征, 台内滩, 碳酸盐岩台地, 飞三段, 三叠系, 四川盆地东北部

Abstract: In recent years, new discoveries have been made in natural gas exploration of the third member of Triassic Feixianguan Formation(T1f3)in northeastern Sichuan Basin. The sedimentary characteristics and petroleum geological significance of T1f3 in northeastern Sichuan Basin were studied through drilling core observation,logging interpretation,facies marker identification and analysis of dominant facies of granular rock. The results show that: (1)The T1f3 in the study area is dominated by open platforms and restricted-evaporate platforms,and four sedimentary subfacies can be identified,including intra-platform shoal,interbank sea,tidal flat and lagoon.(2)The intra-platform shoals are mainly composed of granular rock deposits,which can be further divided into oolitic shoal microfacies and bioclastic shoal microfacies. Oolitic shoals formed in micro-topographic highlands of open platforms or restricted-evaporate platforms,and bioclastic shoals formed in open platforms,both of which had high energy sedimentary water,with upward coarsening reverse grain sequence.(3)The interbank seas and lagoons were mainly developed in the low-lying areas inside the platform,with low depositional environment energy. They can be further divided into calcite interbank seas(calcite lagoons)and dolomitic lagoon microfacies, which belong to semi-restricted to restricted interbank seas(lagoons) . The tidal flats were developed near the mean sea level inside the platform in the late stage of multi-level sea level decline,corresponding to the sedimentary response of sedimentary water shallowing and hydrodynamic weakening,and they can be further divided into gypsum flat microfacies and dolomitic flat microfacies.(4)The thickness of granular rocks is greater than 15 m and the thickness of gypsum rocks is 15-20 m in the northeastern P6-L1-L5 well areas in the study area, and this area can be a key area for exploration of natural gas reservoirs of T1f3.

Key words: sedimentary characteristics, intra-platform shoal, carbonate platform, the third member of Feixianguan Formation, Triassic, northeastern Sichuan Basin

中图分类号: 

  • TE122.2
[1] HALBOUTY M T. Giant fields 1868-2003, in CD-ROM of giant oil and gas fields of the decade, 1990-1999[G]. AAPG Memoir 78, 2003:123-137.
[2] 白国平.世界碳酸盐岩大油气田分布特征[J].古地理学报, 2006, 8(2):241-250. BAI Guoping. Distribution patterns of giant carbonate fields in the world[J]. Journal of Palaeogeography, 2006, 8(2):241-250.
[3] EHRENBERG S N, NADEAU P H, AQRAWI A A M. A comparison of Khuff and Arab reservoir potential throughout the Middle East[J]. AAPG Bulletin, 2007, 91(3):275-286.
[4] MA Yongsheng, GUO Tonglou, ZHAO Xuefeng, et al. The formation mechanism of high-quality dolomite reservoir in the deep of Puguang gas field[J]. Science in China Series D:Earth Sciences, 2008, 51(1):53-64.
[5] YANG Xiaofei, LIN Changsong, YANG Haijuan, et al. Depositional architecture of the Late Ordovician drowned carbonate platform margin and its responses to sea-level fluctuation in the northern slope of the Tazhong region, Tarim Basin[J]. Petroleum Science, 2010, 7:323-336.
[6] 张满郎,郭振华,张林,等.四川安岳气田龙王庙组颗粒滩岩溶储层发育特征及主控因素[J].地学前缘, 2021, 28(1):235-248. ZHANG Manlang, GUO Zhenhua, ZHANG Lin, et al. Characteristics of and main factors controlling the karst shoal reservoir of the Lower Cambrian Longwangmiao Formation in the Anyue gas field, central Sichuan Basin, China[J]. Earth Science Frontiers, 2021, 28(1):235-248.
[7] 姜海健,陈强路,乔桂林,等.塔里木盆地中东部中下奥陶统颗粒滩发育特征及分布[J].岩性油气藏, 2017, 29(5):67-75. JIANG Haijian, CHEN Qianglu, QIAO Guilin, et al. Characteristics and distribution of Lower-Middle Ordovician grain bank in mid-eastern Tarim Basin[J]. Lithologic Reservoirs, 2017, 29(5):67-75.
[8] 王振,张元福,胡晨林,等.鄂尔多斯盆地南部中寒武统张夏组颗粒滩沉积特征及控制因素[J].古地理学报, 2018, 20(2):219-230. WANG Zhen, ZHANG Yuanfu, HU Chenlin, et al. Sedimentary characteristics and controlling factors of grain banks of the Middle Cambrian Zhangxia Formation in southern Ordos Basin[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(2):219-230.
[9] 李建忠,谷志东,鲁卫华,等.四川盆地海相碳酸盐岩大气田形成主控因素与勘探思路[J].天然气工业, 2021, 41(6):13-24.LI Jianzhong, GU Zhidong, LU Weihua, et al. Main factors controlling the formation of giant marine carbonate gas fields in the Sichuan Basin and exploration ideas[J]. Natural Gas Industry, 2021, 41(6):13-24.
[10] 李国军,郑荣才,唐玉林,等.川东北地区飞仙关组层序-岩相古地理特征.岩性油气藏[J].2007, 19(4):64-70. LI Guojun, ZHENG Rongcai, TANG Yulin, et al. Sequencebased lithofacies and paleogeography of the Lower Triassic Feixianguan Formation in northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2007, 19(4):64-70.
[11] 王一刚,洪海涛,夏茂龙,等.四川盆地二叠、三叠系环海槽礁、滩富气带勘探[J].天然气工业, 2008, 28(1):22-27. WANG Yigang, HONG Haitao, XIA Maolong, et al. Exploration of reef bank gas reservoirs surrounding Permian and Triassic troughs in Sichuan Basin[J]. Natural Gas Industry, 2008, 28(1):22-27.
[12] 郭彤楼.川东北元坝地区长兴组-飞仙关组台地边缘层序地层及其对储层的控制[J].石油学报, 2011, 32(3):387-394. GUO Tonglou. Sequence strata of the platform edge in the Changxing and Feixianguan formations in the Yuanba area, northeastern Sichuan Basin and their control on reservoirs[J]. Acta Petrolei Sinica, 2011, 32(3):387-394.
[13] 刘雁婷.川东北地区长兴组-飞仙关组储层特征[J].岩性油气藏, 2019, 31(1):78-86. LIU Yanting. Reservoir characteristics of Changxing-Feixianguan Formation in northeastern Sichuan area[J]. Lithologic Reservoirs, 2019, 31(1):78-86.
[14] 杨雨,钟原,李林娟,等.开江-梁平海槽周缘二叠系-三叠系礁滩组合分布与成因[J].成都理工大学学报(自然科学版), 2021, 48(6):683-690. YANG Yu, ZHONG Yuan, LI Linjuan, et al. Distribution and genesis of Permian-Triassic reef-shoal combination around Kaijiang-Liangping trough in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science&Technology Edition), 2021, 48(6):683-690.
[15] 任婕,胡忠贵,胡明毅,等.涪陵地区下三叠统飞仙关组沉积相特征及有利储集体分布[J].岩性油气藏, 2021, 33(6):70-80. REN Jie, HU Zhonggui, HU Mingyi, et al. Sedimentary facies characteristics and favorable reservoirs distribution of Lower Triassic Feixianguan Formation in Fuling area[J]. Lithologic Reservoirs, 2021, 33(6):70-80.
[16] 徐敏,梁虹,王兰英,等.四川盆地飞仙关组多期鲕滩储层分布特征及迁移模式[J].石油物探, 2021, 60(3):496-504. XU Min, LIANG Hong, WANG Lanying, et al. Spatial distribution and migration model of the Feixianguan oolitic beach reservoir in Sichuan Basin, China[J]. Geophysical Prospecting for Petroleum, 2011, 60(3):496-504.
[17] 胡忠贵,董庆民,李世临,等.川东-渝北地区长兴组-飞仙关组礁滩组合规律及控制因素[J].中国石油大学学报(自然科学版), 2019, 43(3):25-35. HU Zhonggui, DONG Qingmin, LI Shilin, et al. Combination regularities of reef-beach and main controlling factors in ChangxingFeixianguan Formation of eastern Sichuan-northern Chongqing area[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2019, 43(3):25-35.
[18] 李增学,李莹,刘海燕,等.岩相古地理优势相方法及应用:兼谈"广义"与"狭义"岩相古地理及若干新的研究方向[J].古地理学报, 2021, 23(3):489-506. LI Zengxue,LI Ying, LIU Haiyan, et al. Method and application of lithofacies palaeogeographic dominant facies:Also discuss the lithofacies palaeogeography in broad and narrow sense and some new research directions[J]. Journal of Palaeogeography (Chinese Edition), 2021, 23(3):489-506.
[19] 丁熊,陈景山,谭秀成,等.川中-川南过渡带雷口坡组台内滩组合特征[J].岩性油气藏, 2012, 24(4):444-451. DING Xiong, CHEN Jingshan, TAN Xiucheng,et al. Structural characteristics of intra-platform shoal in the Leikoupo Formation in the transitional zone of the central and southern Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 24(4):444-451.
[20] BÁDENAS B, AURELL M. Facies models of a shallow-water carbonate ramp based on distribution of non-skeletal grains (Kimmeridgian,Spain)[J]. Facies, 2010, 56(1):89-110.
[21] ESRAFILI-DIZAJI B, RAHIMPOUR-BONAB H. Generation and evolution of oolitic shoal reservoirs in the Permo-Triassic carbonates, the South Pars Field, Iran[J]. Facies, 2014, 60(4):921-940.
[22] TAN Xiucheng, LIU Hong, LI Ling, et al. Primary intergranular pores in oolitic shoal reservoir of Lower Triassic Feixianguan Formation, Sichuan Basin, Southwest China:Fundamental for reservoir formation and retention diagenesis[J]. Journal of Earth Science, 2011, 22(1):101-114.
[23] 赵雪凤,朱光有,张水昌,等.川东北普光地区与塔中地区深部礁滩体优质储层的对比研究[J].沉积学报, 2009, 27(3):390-400. ZHAO Xuefeng, ZHU Guangyou, ZHANG Shuichang, et al. Comparison of deeply buried and high-quality reef-bank facies reservoirs of Puguang gas field in the northeast of Sichuan Basin with Tazhong gas fields of Tarim Basin[J]. Acta Sedimentologica Sinica, 2009, 27(3):390-400.
[24] 杨伟强,刘正,陈浩如,等.四川盆地下寒武统龙王庙组颗粒滩沉积组合及其对储集层的控制作用[J].古地理学报, 2020, 22(2):251-265. YANG Weiqiang, LIU Zheng, CHEN Haoru, et al. Depositional combination of carbonate grain banks of the Lower Cambrian Longwangmiao Formation in Sichuan Basin and its control on reservoirs[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(2):251-265.
[25] 徐博,杜秋定,伊海生,等.黔东南下古生界碳酸盐岩台地演化[J].科学技术与工程, 2020, 20(20):8019-8027. XU Bo, DU Qiuding, YI Haisheng, et al. Evolution of Lower Paleozoic carbonate platform in southeast Guizhou[J]. Science Technology and Engineering, 2020, 20(20):8019-8027.
[26] 代龙,胡明毅,胡忠贵,等.四川盆地上石炭统黄龙组沉积相分析[J].海相油气地质, 2015, 20(1):45-52. DAI Long, HU Mingyi, HU Zhonggui, et al. Analysis of sedimentary facies of Upper Carboniferous Huanglong Formation in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2015, 20(1):45-52.
[1] 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22.
[2] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[3] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[4] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[5] 周洪锋, 吴海红, 杨禹希, 向红英, 高吉宏, 贺昊文, 赵旭. 二连盆地巴音都兰凹陷B51井区白垩系阿四段扇三角洲前缘沉积特征[J]. 岩性油气藏, 2024, 36(4): 85-97.
[6] 宋志华, 李垒, 雷德文, 张鑫, 凌勋. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏, 2024, 36(3): 40-49.
[7] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[8] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[9] 尹路, 许多年, 乐幸福, 齐雯, 张继娟. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J]. 岩性油气藏, 2024, 36(1): 59-68.
[10] 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156.
[11] 尹艳树, 丁文刚, 安小平, 徐振华. 鄂尔多斯盆地安塞油田塞160井区三叠系长611储层构型表征[J]. 岩性油气藏, 2023, 35(4): 37-49.
[12] 覃建华, 王建国, 李思远, 李胜, 窦智, 彭仕宓. 玛湖凹陷三叠系百口泉组致密砾岩储层水力裂缝特征及形成机制[J]. 岩性油气藏, 2023, 35(4): 29-36.
[13] 薛楠, 邵晓州, 朱光有, 张文选, 齐亚林, 张晓磊, 欧阳思琪, 王淑敏. 鄂尔多斯盆地平凉北地区三叠系长7段烃源岩地球化学特征及形成环境[J]. 岩性油气藏, 2023, 35(3): 51-65.
[14] 文雯, 杨西燕, 向曼, 陶夏妍, 杨容, 李阳, 范家兴, 蒲柏宇. 四川盆地开江—梁平海槽东侧三叠系飞仙关组鲕滩储层特征及控制因素[J]. 岩性油气藏, 2023, 35(2): 68-79.
[15] 肖玲, 陈曦, 雷宁, 易涛, 郭文杰. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 耿燕飞,张春生,韩校锋,杨大超. 安岳—合川地区低阻气层形成机理研究[J]. 岩性油气藏, 2011, 23(3): 70 -74 .