岩性油气藏 ›› 2025, Vol. 37 ›› Issue (6): 35–47.doi: 10.12108/yxyqc.20250604

• 地质勘探 • 上一篇    下一篇

四川盆地蓬莱气田寒武系龙王庙组优质储层特征及主控因素

李勇1, 张亚1, 周刚1, 屈海洲2,3, 龙虹宇1, 李成龙1, 张驰1, 陈迪1   

  1. 1. 中国石油西南油气田公司 勘探开发研究院, 成都 610041;
    2. 西南石油大学 油气藏地质及开发工程国家重点实验室, 成都 610500;
    3. 西南石油大学 地球科学与技术学院, 成都 610500
  • 收稿日期:2025-06-13 修回日期:2025-08-25 出版日期:2025-11-01 发布日期:2025-11-07
  • 第一作者:李勇(1986—),男,博士,高级工程师,主要从事沉积储层地质学方面的研究工作。地址:(610041)四川省成都市高新区天府大道12号。Email:lyong2019@petrochina.com.cn。
  • 通信作者: 张亚(1987—),男,硕士,高级工程师,主要从事油气地质综合方面的研究工作。Email:zhangya08@petrochina.com.cn。
  • 基金资助:
    中国石油天然气股份有限公司重大科技专项“海相碳酸盐岩油气规模增储上产与勘探开发技术研究”(编号:2023ZZ16YJ01)和中国石油西南油气田公司科技项目“扬子西缘震旦系—下古生界碳酸盐岩含油气系统研究”(编号:2025D00101)联合资助。

Characteristics and main controlling factors of high-quality reservoirs in Cambrian Longwangmiao Formation of Penglai Gasfield, Sichuan Basin

LI Yong1, ZHANG Ya1, ZHOU Gang1, QU Haizhou2,3, LONG Hongyu1, LI Chenglong1, ZHANG Chi1, CHEN Di1   

  1. 1. Exploration and Development Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu 610041, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    3. School of Geosciences and Technology, Southwest Petroleum University, Chengdu 610500, China
  • Received:2025-06-13 Revised:2025-08-25 Online:2025-11-01 Published:2025-11-07

摘要: 近年来,川中北部蓬莱气田的东坝1井在寒武系龙王庙组测试获得工业气流。基于岩心、薄片、阴极发光、常规测井、成像测井、地球化学数据等相关资料,系统研究了川中北部蓬莱气田龙王庙组储层特征、成因及分布规律。研究结果表明:①蓬莱气田龙王庙组优质储层岩性以鲕粒云岩为主,砂屑云岩次之;储集空间以溶洞、针状溶孔、残余粒间溶孔和粒内溶孔为主,伴生少量裂缝,整体孔隙度主要为2%~6%,渗透率主要为0.001~1.000 mD,属低孔-低渗储层;可划分为溶洞型(平均孔隙度和渗透率分别为4.2%,0.209 mD)、溶孔型(平均孔隙度和渗透率分别为3.6%,0.052 mD)和孔隙型(平均孔隙度和渗透率分别为3.0%,0.034 mD)3类,其中前二者为优质储层。②优质储层的发育主要受沉积相、准同生大气淡水溶蚀作用、准同生白云石化作用、浅埋藏顺层岩溶作用和构造破裂作用的影响,其中浅埋藏岩溶作用对研究区西部优质储层的影响尤为显著。③优质储层主要分布于西部PS15井区,厚度普遍大于10 m,局部超过30 m;优质储层在东部PS8—PY1井区亦有分布,厚度一般为8~15 m。

关键词: 鲕粒白云岩, 缝洞型碳酸盐岩储层, 岩溶作用, 白云石化作用, 龙王庙组, 寒武系, 蓬莱气田, 四川盆地

Abstract: In recent years, well Dongba 1 in Penglai Gasfield in central and northern Sichuan Basin has obtained industrial gas flow through testing in Cambrian Longwangmiao Formation. Based on relevant data such as core samples, thin sections, cathodoluminescence, conventional logging, imaging logging, and geochemical information, the reservoir characteristics, genesis, and distribution patterns of Longwangmiao Formation in Penglai Gasfield, northern central Sichuan Basin were systematically studied. The results show that: (1) The high-quality reservoir of Longwangmiao Formation in Penglai Gasfield are mainly composed of oolitic dolomite, followed by doloarenite. The reservoir space is primarily karst caves, needle-like dissolved pores, residual intergranular dissolved pores, and intragranular dissolved pores, accompanied by a few fractures. The overall porosity mainly ranges from 2% to 6%, and permeability is mainly 0.001-1.000 mD, characterized as a low-porosity and low-permeability reservoir. The reservoir types of Longwangmiao Formation can be divided into karst cave type(with an average porosity of 4.2% and permeability of 0.209 mD), dissolved pore type(with an average porosity of 3.6% and permeability of 0.052 mD)and pore type(with an average porosity of 3.0% and permeability of 0.034 mD), with the former two being high-quality reservoirs.(2) The development of high-quality reservoirs is mainly influenced by sedimentary facies, penecontemporaneous meteoric water dissolution, penecontem-poraneous dolomitization, shallow buried bedding karstification, and structural fractures. Among them, shallow buried karstification has significant impact on high-quality reservoirs in the western study area.(3) High-quality reservoirs are mainly distributed in the PS15 wellblock in the western region, with thickness generally over 10 m and locally exceeding 30 m. They are also distributed in the PS8-PY1 wellblock in the eastern region, with thickness generally ranging from 8 m to 15 m.

Key words: oolitic dolomite, fracture-vuggy carbonate reservoir, karstification, dolomitization, Longwangmiao Formation, Cambrian, Penglai Gasfield, Sichuan Basin

中图分类号: 

  • TE122
[1] LIU Shugen, SUN Wei, LI Zhiwu, et al. Distribution characteristics of marine carbonate reservoirs and their tectonic controlling factors across the Sichuan superimposed basin[J]. Lithologic Reservoirs, 2016, 28(5): 1-17. 刘树根, 孙玮, 李智武, 等. 四川叠合盆地海相碳酸盐岩油气分布特征及其构造主控因素[J]. 岩性油气藏, 2016, 28(5): 1-17.
[2] SIMA Liqiang, CHEN Zhiqiang, WANG Liang, et al. Permeability modeling based on the classification of beach-controlled karst dolomite reservoirs: A case from Longwangmiao Formation in Moxi-Gaoshiti area, central Sichuan Basin[J]. Lithologic Reservoirs, 2017, 29(3): 92-102. 司马立强, 陈志强, 王亮, 等. 基于滩控岩溶型白云岩储层分类的渗透率建模方法研究: 以川中磨溪-高石梯地区龙王庙组为例[J]. 岩性油气藏, 2017, 29(3): 92-102.
[3] DU Jinhu, ZOU Caineng, XU Chunchun, et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3): 268-277. 杜金虎, 邹才能, 徐春春, 等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41 (3): 268-277.
[4] MA Xinhua. Innovation-driven efficient development of the Longwangmiao Fm large-scale sulfur gas reservoir in Moxi block, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(2): 1-8. 马新华. 创新驱动助推磨溪区块龙王庙组大型含硫气藏高效开发[J]. 天然气工业, 2016, 36(2): 1-8.
[5] HAO Bin, ZHAO Wenzhi, HU Suyun, et al. Bitumen formation of Cambrian Longwangmiao Formation in the central Sichuan and its implication for hydrocarbon accumulation[J]. Petroleum Research, 2018, 3(1): 44-56.
[6] YANG Yu, WEN Long, SONG Zezhang, et al. Breakthrough and potential of natural gas exploration in multi-layer system of Penglai gas area in the north of central Sichuan paleo-uplift[J]. Acta Petrolei Sinica, 2022, 43(10): 1351-1368. 杨雨, 文龙, 宋泽章, 等. 川中古隆起北部蓬莱气区多层系天然气勘探突破与潜力[J]. 石油学报, 2022, 43(10): 1351-1368.
[7] ZHANG Benjian, ZHOU Gang, SONG Zezhang, et al. Multilayers three-dimensional natural gas accumulation of the Upper Sinian-Lower Cambrian marine carbonate rocks in Penglai gas area, north slope of central Sichuan paleo-uplift[J]. Marine Origin Petroleum Geology, 2023, 28(4): 401-412. 张本健, 周刚, 宋泽章, 等. 川中古隆起北斜坡蓬莱气区上震旦统-下寒武统海相碳酸盐岩天然气多层系立体成藏[J]. 海相油气地质, 2023, 28(4): 401-412.
[8] TIAN Yanhong, LIU Shugen, ZHAO Yihua, et al. Formation mechanism of high quality Longwangmiao reservoir from central Sichuan Basin[J]. Journal of Guilin University of Technology, 2015, 35(2): 217-226. 田艳红, 刘树根, 赵异华, 等. 川中地区下寒武统龙王庙组优质储层形成机理[J]. 桂林理工大学学报, 2015, 35(2): 217-226.
[9] GAO Da, HU Mingyi, LI Anpeng, et al. High-frequency sequence and microfacies and their impacts on favorable reservoir of Longwangmiao Formation in central Sichuan Basin[J]. Earth Science, 2021, 46(10): 3520-3534. 高达, 胡明毅, 李安鹏, 等. 川中地区龙王庙组高频层序与沉积微相及其对有利储层的控制[J]. 地球科学, 2021, 46(10): 3520-3534.
[10] WEN Huaguo, ZHENG Rongcai, DANG Lurui, et al. Characteristics of reef and shoal facies reservoir of Upper Permian Changxing Formation in Wubaiti area, eastern Sichuan Basin[J]. Lithologic Reservoirs, 2010, 22(2): 24-31. 文华国, 郑荣才, 党录瑞, 等. 四川盆地东部五百梯地区长兴组礁、滩相储层特征[J]. 岩性油气藏, 2010, 22(2): 24-31.
[11] WANG Bei, LIU Xiangjun, SIMA Liqiang, et al. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application[J]. Lithologic Reservoirs, 2019, 31(2): 124-133. 王蓓, 刘向君, 司马立强, 等. 磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用[J]. 岩性油气藏, 2019, 31 (2): 124-133.
[12] ZHANG Manlang, GUO Zhenhua, ZHANG Lin, et al. Characteristics and main factors controlling of the karst shoal reservoir of the lower Cambrian Longwangmiao Formation in the Anyue gas field, central Sichuan Basin[J]. Earth Science Frontiers, 2021, 28(1): 235-248. 张满郎, 郭振华, 张林, 等. 四川安岳气田龙王庙组颗粒滩岩溶储层发育特征及主控因素[J]. 地学前缘, 2021, 28(1): 235-248.
[13] SU Nan, YANG Wei, YUAN Baoguo, et al. Structural features and deformation mechanism of transtensional faults in Himalayan Period, Sichuan Basin[J]. Earth Science, 2021, 46(7): 2362-2378. 苏楠, 杨威, 苑保国, 等. 四川盆地喜马拉雅期张扭性断裂构造特征及形成机制[J]. 地球科学, 2021, 46(7): 2362-2378.
[14] LU Keliang, WU Kangjun, LI Zhijun, et al. Characteristics and evolution model of hydrocarbon accumulation of Cambrian Longwangmiao Formation in the north slope of central Sichuan paleo-uplift[J]. Lithologic Reservoirs, 2024, 36(4): 159-168. 卢科良, 吴康军, 李志军, 等. 川中古隆起北斜坡寒武系龙王庙组油气成藏特征及演化模式[J]. 岩性油气藏, 2024, 36(4): 159-168.
[15] LI Wenke, WANG Jun, LI Jinsong, et al. Characteristics and origin of the Sinian-Permian fault system and its controls on the formation of paleo-carbonate reservoirs: A case study from Central Paleo-Uplift, Sichuan Basin, China[J]. Interpretation, 2018, 6(1): T191-T208.
[16] NIU Siqi, LIU Guangdi, WANG Yunlong, et al. Occurrence characteristics and genesis mechanism of pyrobitumen in Sinian Dengying to Cambrian Longwangmiao reservoirs in central Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46 (5): 1039-1049. 牛思琪, 柳广弟, 王云龙, 等. 川中地区震旦系灯影组-寒武系龙王庙组储层焦沥青赋存特征与成因机制[J]. 石油实验地质, 2024, 46(5): 1039-1049.
[17] GUAN Shuwei, LIANG Han, JIANG Hua, et al. Characteristics and evolution of the main strike-slip fault belts of the central Sichuan Basin, southwestern China, and associated structures[J]. Earth Science Frontiers, 2022, 29(6): 252-264. 管树巍, 梁瀚, 姜华, 等. 四川盆地中部主干走滑断裂带及伴生构造特征与演化[J]. 地学前缘, 2022, 29(6): 252-264.
[18] YAO Genshun, ZHOU Jingao, ZOU Weihong, et al. Characteristics and distribution rule of Lower Cambrian Longwangmiao grain beach in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2013, 18(4): 1-8. 姚根顺, 周进高, 邹伟宏, 等. 四川盆地下寒武统龙王庙组颗粒滩特征及分布规律[J]. 海相油气地质, 2013, 18(4): 1-8.
[19] YANG Xuefei, WANG Xingzhi, DAI Lincheng, et al. Sedimentary features of the Lower Cambrian Longwangmiao Formation in the central Sichuan Basin[J]. Lithologic Reservoirs, 2015, 27(1): 95-101. 杨雪飞, 王兴志, 代林呈, 等. 川中地区下寒武统龙王庙组沉积相特征[J]. 岩性油气藏, 2015, 27(1): 95-101.
[20] HAN Bo, HE Zhiliang, REN Nana, et al. Characteristic and main controlling factors of carbonate reservoirs of Longwangmiao Formation in eastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 75-85. 韩波, 何治亮, 任娜娜, 等. 四川盆地东缘龙王庙组碳酸盐岩储层特征及主控因素[J]. 岩性油气藏, 2018, 30(1): 75-85.
[21] ZHONG Yong, LI Yalin, ZHANG Xiaobin, et al. Evolution characteristics of central Sichuan palaeouplift and its relationship with Early Cambrian Mianyang-Changning intracratonic sag[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2014, 41(6): 703-712. 钟勇, 李亚林, 张晓斌, 等. 川中古隆起构造演化特征及其与早寒武世绵阳-长宁拉张槽的关系[J]. 成都理工大学学报(自然科学版), 2014, 41(6): 703-712.
[22] MEI Qinghua. Tectonic evolution and formation mechanism of Leshan-Longnüsi paleo-uplift, Sichuan Basin[D]. Beijing: China University of Geosciences(Beijing), 2015. 梅庆华. 四川盆地乐山-龙女寺古隆起构造演化及其成因机制[D]. 北京: 中国地质大学(北京), 2015.
[23] ZHANG Manlang, XIE Zengye, LI Xizhe, et al. Characteristics of lithofacies paleogeography of Cambrian in Sichuan Basin[J]. Acta Sedimentologica Sinica, 2010, 28(1): 128-139. 张满郎, 谢增业, 李熙喆, 等. 四川盆地寒武纪岩相古地理特征[J]. 沉积学报, 2010, 28(1): 128-139.
[24] LI Wei, YU Huaqi, DENG Hongbin. Stratigraphic division and correlation and sedimentary characteristics of the Cambrian in central-southern Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 681-690. 李伟, 余华琪, 邓鸿斌. 四川盆地中南部寒武系地层划分对比与沉积演化特征[J]. 石油勘探与开发, 2012, 39(6): 681-690.
[25] ZHAO Yuru. Sedimentary evolution of the Lower Cambrian Longwangmiao Formation in central Sichuan and its control on reservoir development[D]. Wuhan: Yangtze University, 2023. 赵玉茹. 川中地区龙王庙组沉积演化及其对有利储层的控制[D]. 武汉: 长江大学, 2023.
[26] National Technical Committee on Petroleum and Natural Gas Standardization. Petroleum and natural gas industry standard of the People's Republic of China: SY/T 6285-2011, evaluation method for oil and gas reservoirs[S]. Beijing: National Energy Administration, 2011. 全国石油天然气标准化技术委员会. 中华人民共和国石油天然气行业标准: SY/T 6285-2011, 油气储层评价方法[S]. 北京: 国家能源局, 2011.
[27] XING Fengcun, LIU Ziqi, QIAN Hongshan, et al. Characteristics of Longwangmiao reservoirs in Penglai gas area and comparison with those in Moxi-Gaoshiti area, central Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(3): 510-521. 邢凤存, 刘子琪, 钱红杉, 等. 川中蓬莱气区龙王庙组储层特征及其与磨溪-高石梯地区对比[J]. 石油实验地质, 2024, 46(3): 510-521.
[28] LIU Shugen, HUANG Wenming, ZHANG Changjun, et al. Research status of dolomite genesis and its problems in Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(2): 6-15. 刘树根, 黄文明, 张长俊, 等. 四川盆地白云岩成因的研究现状及存在问题[J]. 岩性油气藏, 2008, 20(2): 6-15.
[29] LI Qianwen, JIN Zhenkui, JIANG Fujie. Carbon and oxygen isotope analysis method for dolomite formation mechanism: A case study from Proterozoic dolomite in Yanshan area[J]. Lithologic Reservoirs, 2014, 26(4): 117-122. 李倩文, 金振奎, 姜福杰. 白云岩成因碳氧同位素分析方法初探: 以北京燕山地区元古界白云岩为例[J]. 岩性油气藏, 2014, 26(4): 117-122.
[30] REN Ying, ZHONG Dakang, LIU Huilin, et al. Isotopic and elemental evidence for paleoenvironmental evolution of Cambrian Stage 4 Longwangmiao Formation, east Chongqing, China[J]. Earth Science, 2018, 43(11): 4066-4095. 任影, 钟大康, 柳慧琳, 等. 渝东地区寒武系第四阶龙王庙组古环境演化的稳定同位素与主、微量元素证据[J]. 地球科学, 2018, 43(11): 4066-4095.
[31] KUMP L R. Interpreting carbon-isotope excursions: Strangelove oceans[J]. Geology, 1991, 19: 299-302.
[32] HORACEK M, BRANDNER R, ABART R. Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: Evidence for rapid changes in storage of organic carbon[J]. Paleogeography, Paleoclimatology, Paleoecology, 2007, 252(1/2): 347-354.
[33] UREY H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society(Resumed), 1947: 562-581.
[34] EPSTEIN S, BUCHSBAUM R, LOWENSTAM H A, et al. Revised carbonate-water isotopic temperature scale[J]. Geological Society of America Bulletin, 1953, 64(11): 1315-1326.
[35] KEITH M L, WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816.
[36] SHAO Longyi. The radition of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc. [J]. Journal of China University of Mining & Technology, 1994, 23(1): 39-45. 邵龙义. 碳酸盐岩氧、碳同位素与古温度等的关系[J]. 中国矿业大学学报, 1994, 23(1): 39-45.
[37] XIE Xinong, YE Maosong, XU Changgui, et al. High quality reservoirs characteristics and forming mechanisms of mixed siliciclastic-carbonate sediments in the Bozhong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3526-3539. 解习农, 叶茂松, 徐长贵, 等. 渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理[J]. 地球科学, 2018, 43(10): 3526-3539.
[38] SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 545-554. 沈安江, 赵文智, 胡安平, 等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42(5): 545-554.
[39] CHEN Rongkun. Application of stable oxygen and carbon isotope in the research of carbonate diagenetic environment[J]. Acta Sedimentologica Sinica, 1994, 12(4): 11-21. 陈荣坤. 稳定氧碳同位素在碳酸盐岩成岩环境研究中的应用[J]. 沉积学报, 1994, 12(4): 11-21.
[40] JIN Mindong, ZENG Wei, TAN Xiucheng, et al. Characteristics and controlling factors of beach-controlled karst reservoirs in Cambrian Longwangmiao Formation, Moxi-Gaoshiti area, Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(6): 650-660. 金民东, 曾伟, 谭秀成, 等. 四川磨溪-高石梯地区龙王庙组滩控岩溶型储集层特征及控制因素[J]. 石油勘探与开发, 2014, 41(6): 650-660.
[41] PAN Liyin, HUANG Geping, SHOU Jianfeng, et al. A preliminary study of formation environment of the Neogene Lacustrine Carbonates in Nanyishan Area of Qaidam Basin: Constrains from carbon-oxygen isotope and fluid inclusion analysis[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(1): 71-74. 潘立银, 黄革萍, 寿建峰, 等. 柴达木盆地南翼山地区新近系湖相碳酸盐岩成岩环境初探: 碳、氧同位素和流体包裹体证据[J]. 矿物岩石地球化学通报, 2009, 28(1): 71-74.
[42] WANG Kun, LI Wei, LU Jin, et al. Carbon, oxygen, strontium isotope characteristics and cause analysis of Carboniferous carbonate rocks in the eastern Sichuan Basin[J]. Geochimica, 2011, 40(4): 351-362. 王坤, 李伟, 陆进, 等. 川东地区石炭系碳酸盐岩碳、氧、锶同位素特征及其成因分析[J]. 地球化学, 2011, 40(4): 351-362.
[43] CAO Hongxia, SHANG Ting, WU Haiyan, et al. Characteristics of carbon and oxygen isotopes of carbonate rocks in Majiagou Formation and their implication, southeastern Ordos Basin[J]. Journal of Northwest University(Natural Science Edition), 2018, 48(4): 578-586. 曹红霞, 尚婷, 吴海燕, 等. 鄂尔多斯盆地东南部马家沟组碳酸盐岩碳氧同位素特征及意义[J]. 西北大学学报(自然科学版), 2018, 48(4): 578-586.
[44] REN Jie. Conventional logging evaluation method for carbonate fractured reservoir[J]. Lithologic Reservoirs, 2020, 32(6): 129-137. 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137.
[45] GUAN Shuwei, JIANG Hua, LU Xuesong, et al. Strike-slip fault system and its control on oil & gas accumulation in central Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(11): 1542-1557. 管树巍, 姜华, 鲁雪松, 等. 四川盆地中部走滑断裂系统及其控油气作用[J]. 石油学报, 2022, 43(11): 1542-1557.
[46] JIAO Fangzheng, YANG Yu, RAN Qi, et al. Distribution and gas exploration of the strike-slip faults in the central Sichuan Basin[J]. Natural Gas Industry, 2021, 41(8): 92-101. 焦方正, 杨雨, 冉崎, 等. 四川盆地中部地区走滑断层的分布与天然气勘探[J]. 天然气工业, 2021, 41(8): 92-101.
[47] LI Chunquan, CHEN Honghan, TANG Daqing, et al. Strike-slip faults controlled"floor type"hydrocarbon accumulation model in Gaoshiti-Moxi area, Sichuan Basin: A case study of SinianCambrian[J]. Earth Science, 2023, 48(6): 2254-2266. 李纯泉, 陈红汉, 唐大卿, 等. 四川盆地高石梯-磨溪地区走滑断裂控制下的"层楼式"油气成藏模式: 以震旦系-寒武系为例[J]. 地球科学, 2023, 48(6): 2254-2266.
[48] XU Fanghao. Fluid system and hydrocarbon accumulation of Sinian Dengying Formation and Cambrian Longwangmiao Formation in Central Sichuan[D]. Chengdu: Chengdu University of Technology, 2017. 徐昉昊. 川中地区震旦系灯影组和寒武系龙王庙组流体系统与油气成藏[D]. 成都: 成都理工大学, 2017.
[49] XU Fanghao, YUAN Haifeng, XU Guosheng, et al. Fluid charging and hydrocarbon accumulation in the Cambrian Longwangmiao Formation of Moxi structure, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(3): 426-435. 徐昉昊, 袁海锋, 徐国盛, 等. 四川盆地磨溪构造寒武系龙王庙组流体充注和油气成藏[J]. 石油勘探与开发, 2018, 45 (3): 426-435.
[1] 杨杨, 王海青, 石学文, 曾玉婷, 高翔, 李金勇, 张轩昂, 闫建平. 基于FMI图像微电导率曲线时频信息识别页岩层理构造的方法及应用——以四川盆地资中地区寒武系筇竹寺组一段为例[J]. 岩性油气藏, 2025, 37(6): 59-70.
[2] 罗冰, 周刚, 马奎, 王文之, 徐少立, 武鲁亚, 王玥蕴, 张新. 四川盆地德阳—安岳裂陷西侧震旦系灯四段储层特征及成藏主控因素[J]. 岩性油气藏, 2025, 37(5): 49-58.
[3] 王振, 王兴志, 朱逸青, 杨雨然, 杨一茗, 康家豪, 黄柏文, 吕豪. 四川盆地德阳—安岳裂陷槽寒武系筇竹寺组地层划分及勘探意义[J]. 岩性油气藏, 2025, 37(5): 97-110.
[4] 王青, 田冲, 罗超, 张景缘, 杨雪, 吴伟, 陶夏妍. 四川盆地遂宁—合江地区二叠系龙潭组煤岩气储层特征及勘探前景[J]. 岩性油气藏, 2025, 37(4): 26-37.
[5] 邢倩, 李杨凡, 李翔, 万子千, 李雅兰. 川北米仓山地区寒武系仙女洞组碳酸盐岩储集特征及主控因素[J]. 岩性油气藏, 2025, 37(4): 50-62.
[6] 王敬朝, 金玮, 常立朋, 董忠良, 王高文. 川中合川—潼南地区二叠系茅三段岩溶储层特征及油气成藏过程[J]. 岩性油气藏, 2025, 37(4): 63-72.
[7] 闫伟涛, 廖芸, 黄文明, 张本健, 胡欣, 李文正, 吴娟, 邓宾. 川西南二叠系栖霞组多期流体活动特征及成藏过程[J]. 岩性油气藏, 2025, 37(4): 73-83.
[8] 杨雪, 杨雨然, 张景缘, 田鹤, 王青, 宋芳, 张赛柯, 陈瑶. 川北地区开江—梁平海槽二叠系海相页岩特征及优质储层形成机制[J]. 岩性油气藏, 2025, 37(3): 108-119.
[9] 赵艾琳, 赖强, 樊睿琦, 吴煜宇, 陈杰, 严双栏, 张家伟, 廖广志. 基性火山岩核磁共振响应机理及孔隙结构评价方法——以四川盆地西南部二叠系峨眉山玄武岩组为例[J]. 岩性油气藏, 2025, 37(3): 153-164.
[10] 张庆龙, 毛元元, 冯建松, 袁学生, 周微, 朱福金, 轩玲玲. 裂缝-孔隙型碳酸盐岩油藏加密井井位部署新方法——以渤海湾盆地黄骅坳陷唐海油田寒武系油藏为例[J]. 岩性油气藏, 2025, 37(3): 165-175.
[11] 李凌, 邓禹, 张新宇, 罗文军, 赵东方, 曾建军, 刘耘, 谭秀成. 川中蓬莱—高磨地区震旦系灯二段泡沫绵层白云岩成因及地质意义[J]. 岩性油气藏, 2025, 37(2): 60-69.
[12] 李亚, 王尉, 赵立可, 刘冉, 张玺华, 陈延贵, 黄天海, 肖笛. 四川盆地德阳—绵阳凹陷南缘二叠系栖霞组沉积演化及有利储层分布[J]. 岩性油气藏, 2025, 37(2): 81-91.
[13] 吴冠桦, 刘宏, 宋林珂, 曾琪, 杨涛. 四川盆地西南部东瓜场地区侏罗系沙溪庙组沉积特征及有利储层预测[J]. 岩性油气藏, 2025, 37(2): 92-102.
[14] 张坤, 刘宏, 谭磊, 梁锋, 王立恩, 马梓珂, 刘博文, 杨孟祥. 川中北部蓬莱地区震旦系灯影组二段地震沉积学特征[J]. 岩性油气藏, 2025, 37(2): 189-200.
[15] 熊昶, 王彭, 刘小钰, 王伟, 赵星星, 孙冲. 塔中隆起奥陶系油气性质及运聚富集模式[J]. 岩性油气藏, 2025, 37(1): 53-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!