岩性油气藏 ›› 2025, Vol. 37 ›› Issue (6): 59–70.doi: 10.12108/yxyqc.20250606

• 地质勘探 • 上一篇    

基于FMI图像微电导率曲线时频信息识别页岩层理构造的方法及应用——以四川盆地资中地区寒武系筇竹寺组一段为例

杨杨1, 王海青2, 石学文1, 曾玉婷2, 高翔1, 李金勇2, 张轩昂3,4, 闫建平3,4,5   

  1. 1. 中国石油西南油气田公司 页岩气研究院, 成都 610500;
    2. 山东立鼎石油科技有限公司, 山东 东营 257100;
    3. 西南石油大学 地球科学与技术学院, 成都 610500;
    4. 天然气地质四川省重点实验室, 西南 石油大学, 成都 610500;
    5. 油气藏地质及开发工程全国重点实验室, 西南石油大学, 成都 610500
  • 收稿日期:2025-01-24 修回日期:2025-03-28 发布日期:2025-11-07
  • 第一作者:杨杨(1982—),男,硕士,高级工程师,从事页岩气勘探地质综合研究工作。地址:(610500)四川省成都市成华区建设北路一段1号。Email:snyangyang@petrochina.com.cn。
  • 通信作者: 王海青(1987—),女,硕士,工程师,主要从事非常规油气测井处理及解释工作。Email:wanghaiqing@dylpt.com。
  • 基金资助:
    国家科自然科学基金项目“低电阻率页岩气储层:成因机制差异及含气饱和度模型研究”(编号:42372177),中国石油-西南石油大学创新联合体科技合作项目“川南深层与昭通中浅层海相页岩气规模效益开发关键技术研究”(编号:2020CX020000)与四川省自然科学基金项目“页岩气储层低电阻率成因机制及对含气性的影响研究”(编号:2022NSFSC0287)联合资助。

A method and application of identifying shale bedding structures based on FMI image micro-electrical conductivity curve time-frequency information: A case study on the first member of Cambrian Qiongzhusi Formation in Zizhong area of Sichuan Basin

YANG Yang1, WANG Haiqing2, SHI Xuewen1, ZENG Yuting2, GAO Xiang1, LI Jinyong2, ZHANG Xuanang3,4, YAN Jianping3,4,5   

  1. 1. Research Institute of Shale Gas, PetroChina Southwest Oil & Gasfield Company, Chengdu 610500, China;
    2. Shandong Leading Petro-Tech Co., Ltd., Dongying 257100, Shandong, China;
    3. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    4. Natural Gas Geology Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, China;
    5. National Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
  • Received:2025-01-24 Revised:2025-03-28 Published:2025-11-07

摘要: 以四川盆地资中地区ZX01井寒武系筇竹寺组页岩为研究对象,提出了一种基于FMI图像提取等效微电导率曲线(EC),构建纹层发育曲线(LC)来识别纹层发育段及层理构造的新方法,探讨了页岩层理构造的LC曲线响应特征,并对LC曲线在岩相识别、页岩气“甜点”评价中的应用效果进行了分析。研究结果表明:①利用改进的Criminisi算法对FMI动态图像进行复原,提取复原后图像的EC曲线,对曲线进行频谱分析,对比纹层发育段和块状段的频率分布差异并进行傅里叶带通滤波,得到纹层信号增强曲线,对其进行取绝对值和包络线处理,即获得反映纹层发育程度的曲线(LC)。②研究区筇竹寺组一段纹层段主要分布于1、3、5小层,LC值一般大于0.16,层状构造LC值低于0.16,块状构造LC值最低。③利用机器学习模型进行页岩岩相识别时,将LC曲线作为特征输入,岩相的识别精度提高了3%;LC值与TOC、脆性指数及游离气含量、吸附气含量均呈正相关关系,与孔隙度呈弱负相关关系,LC值越高,纹层越发育,TOC含量和脆性矿物的含量就越高;在水力压裂过程中,脆性指数较高的层段有利于裂缝扩展,叠加纹层的发育可形成复杂的缝网系统,有助于提高页岩气井的产量。

关键词: 页岩纹层, 页岩岩相, 层理构造, 时频信息, FMI图像, 微电导率曲线, 筇竹寺组, 寒武系, 四川盆地

Abstract: With Cambrian Qiongzhusi Formation shale of well ZX01 in Zizhong area of Sichuan Basin as the case study, a new method was proposed to identify laminatedion developed intervals and bedding structures by extracting the equivalent micro-conductivity curve (EC) from FMI images to construct a lamination concentration curve(LC). LC curves response characteristics of shale bedding structures were discussed, and the application effectiveness of the LC curve in lithofacies identification and shale gas"sweet spot"evaluation was analyzed. The results show that: (1) An improved Criminisi algorithm was used to restore FMI dynamic images, extract the EC curve from the restored images, perform spectral analysis on the curve, compare the frequency distribution differences between laminated intervals and massive intervals, and perform Fourier band-pass filtering to obtain a laminar signal-enhanced curve. Absolute value and envelope processing were then applied to derive a curve (LC) reflecting the degree of laminar development.(2) Laminated intervals in the first member of Qiongzhusi Formation in the study area mainly distribute in sub-layers 1, 3 and 5, with LC values generally greater than 0.16. LC values of bedded structures are below 0.16, while LC values of massive structures are the lowest.(3) When using machine learning models for shale lithofacies identification, incorporating the LC curve as a feature input improved lithofacies recognition accuracy by 3%. The LC value exhibits positive correlations with TOC, brittleness index, free gas content, and adsorbed gas content, and exhibits a weak negative correlation with porosity. Higher LC values indicate more developed laminations, higher TOC content, and higher brittle mineral content. During hydraulic fracturing, intervals with higher brittleness index are more conducive to fracture propagation, and the development of superimposed laminations can form a complex fracture network system, which increase shale gas well productivity.

Key words: shale lamination, shale lithofacies, bedding structure, time-frequency information, FMI image, micro-electrical conductivity curve, Qiongzhusi Formation, Cambrian, Sichuan Basin

中图分类号: 

  • P583
[1] ZHANG Shaolong, YAN Jianping, CAI Jingong, et al. Fracture characteristics and logging identification of lacustrine shale in the Jiyang Depression, Bohai Bay Basin, Eastern China[J]. Marine and Petroleum Geology, 2021, 132: 105192.
[2] YAN Jianping, LAI Siyu, GUO Wei, et al. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells[J]. Lithologic Reservoirs, 2024, 36(5): 1-14. 闫建平, 来思俣, 郭伟, 等. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[3] TENG Geer, LU Longfei, YU Lingjie, et al. Formation, preservation and connectivity control of organic pores in shale[J]. Petroleum Exploration and Development, 2021, 48(4): 687-699. 腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发. 2021, 48(4): 687-699.
[4] DOU Wei, SUN Pichen, OUYANG Zheyuan, et al. Influence of lamination development on shale reservoirs: A case study of shales from the Upper Es4 and Lower Es3 Sub-member in the Dongying Sag of the Bohai Bay Basin[J]. Journal of Northeast Petroleum University, 2023, 47(4): 14-28. 窦伟, 孙丕臣, 欧阳哲远, 等. 纹层发育程度对页岩储层的影响: 以渤海湾盆地东营凹陷沙四上-沙三下亚段页岩为例[J]. 东北石油大学学报, 2023, 47(4): 14-28.
[5] HUA Jinlin, WU Songtao, QIU Zhen, et al. Lamination texture and its effect on reservoir properties: A case study of Longmaxi Shale, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 281-296. 华柑霖, 吴松涛, 邱振, 等. 页岩纹层结构分类与储集性能差异: 以四川盆地龙马溪组页岩为例[J]. 沉积学报, 2021, 39 (2): 281-296.
[6] LUO Jingchao, YAN Jianping, ZHENG Majia, et al. Effects of mineral composition and lamina on mechanical properties and fractures of the Wufeng-Longmaxi shale in the Luzhou area of the southern Sichuan Basin[J]. Energy & Fuels, 2023, 37(18): 13949-13959.
[7] GUAN Qianqian, JIANG Long, CHENG Ziyan, et al. A new method of shale oil facies element logging evaluation and its application in Dongying Sag[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 435-445. 管倩倩, 蒋龙, 程紫燕, 等. 东营凹陷页岩油岩相要素测井评价新方法及其应用[J]. 油气藏评价与开发, 2024, 14(3): 435-445.
[8] TAN Yuhan, ZHANG Fengsheng, YAO Yabin, et al. Logging evaluation of shale laminae: A case study from the WufengLongmaxi formations in the southern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 281-296. 谭玉涵, 张凤生, 姚亚彬, 等. 页岩纹层的测井评价方法研究: 以川南五峰组-龙马溪组为例[J]. 地质科技通报, 2023, 42 (6): 281-296.
[9] LAI Jin, XIAO Lu, BAI Tianyu, et al. Interpretation and evaluation methods of image logs and their geological applications [J]. Bulletin of Geological Science and Technology, 2024, 43 (3): 323-340. 赖锦, 肖露, 白天宇, 等. 成像测井解释评价方法及其地质应用[J]. 地质科技通报, 2024, 43(3): 323-340.
[10] CHENG Xi, REN Zhanli. Artificial intelligence logging: Foundations, principles, technologies, and applications[J]. Coal Geology & Exploration, 2024, 52(8): 145-164. 程希, 任战利. 人工智能测井: 基础、原理、技术及应用[J]. 煤田地质与勘探, 2024, 52(8): 145-164.
[11] ZHOU Gang, YANG Dailin, SUN Yiting, et al. Sedimentary filling process and petroleum geological significance of Cambrian Canglangpu Formation in Sichuan Basin and adjacent areas[J]. Lithologic Reservoirs, 2024, 36(5): 25-34. 周刚, 杨岱林, 孙奕婷, 等. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36 (5): 25-34.
[12] WEI Quanchao, LI Xiaojia, LI Feng, et al. Development characteristics and significance of fracture veins of Lower Cambrian Qiongzhusi Formation in Wangcang area at Micang Mountain front, Sichuan Basin[J]. Lithologic Reservoirs, 2023, 35(5): 62-70. 魏全超, 李小佳, 李峰, 等. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70.
[13] LUO Xin, YAN Jianping, WANG Min, et al. Optimization and application of borehole wall restoration method of FMI logging image[J]. Well Logging Technology, 2021, 45(4): 386-393. 罗歆, 闫建平, 王敏, 等. FMI测井图像井壁复原方法优化及应用[J]. 测井技术, 2021, 45(4): 386-393.
[14] YAN Jianping, CAI Jingong, ZHAO Minghai, et al. Application of electrical image logging in the study of sedimentary characteristics of sandy conglomerates[J]. Petroleum Exploration and Development, 2011, 38(4): 444-451. 闫建平, 蔡进功, 赵铭海, 等. 电成像测井在砂砾岩体沉积特征研究中的应用[J]. 石油勘探与开发, 2011, 38(4): 444-451.
[15] YUAN Zilong, CHEN Xi, ZHANG Hongjiang. An application of resistivity imaging logging data in lithologic identification of glutenite reservoir[J]. Science Technology and Engineering, 2012, 12(4): 758-761. 袁子龙, 陈曦, 张洪江. 电成像测井资料在砂砾岩油气藏岩性识别中的应用[J]. 科学技术与工程, 2012, 12(4): 758-761.
[16] LUO Xin, YAN Jianping, WANG Jun, et al. A method for identifying sedimentary microfacies in a sandy conglomerate body on deep learning of FMI images: Case study of upper submember of the Fourth member, Shahejie Formation in Y920 block, northern zone, Dongying Sag[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1138-1152. 罗歆, 闫建平, 王军, 等. 基于FMI图像深度学习的砂砾岩体沉积微相识别方法: 以东营凹陷北带Y920区块沙四上亚段为例[J]. 沉积学报, 2023, 41(4): 1138-1152.
[17] REN Yufei, YAN Jianping, WANG Min, et al. Particle size logging inversion method of deep complex clastic rock and its application in fine lithology identification[J]. Journal of Palaeogeography(Chinese Edition), 2025, 27(1): 240-255. 任昱霏, 闫建平, 王敏, 等. 复杂碎屑岩粒度测井反演方法及在岩性精细识别中的应用[J]. 古地理学报, 2025, 27(1): 240-255.
[18] LIU Juan, MIN Xuanlin, QI Zhongli, et al. Multi-dimensional lithology identification method based on microresistivity image logging[J]. Well Logging Technology, 2023, 47(6): 726-735. 刘娟, 闵宣霖, 漆仲黎, 等. 基于电成像测井的多维度岩性识别方法[J]. 测井技术, 2023, 47(6): 726-735.
[19] LAI Fuqiang, XIA Weixu, GONG Dajian, et al. Logging identification method of mud shale fractures based on wavelet high frequency attribute[J]. Progress in Geophysics, 2020, 35(1): 124-131. 赖富强, 夏炜旭, 龚大建, 等. 基于小波高频属性的泥页岩裂缝测井识别方法研究[J]. 地球物理学进展, 2020, 35(1): 124-131.
[20] GUO Zhiwei. Research on application of time-frequency analysis in high-precision seismic data[D]. Beijing: China University of Petroleum(Beijing), 2020. 郭志伟. 时频分析在高精度地震资料处理中的应用研究[D]. 北京: 中国石油大学(北京), 2020.
[21] THOMSON D J. Spectrum estimation and harmonic analysis [J]. Proceedings of the IEEE, 1982, 70(9): 1055-1096.
[22] YAN Jianping, HE Xu, HU Qinhong, et al. Lower Es3 in Zhanhua Sag, Jiyang Depression: A case study for lithofacies classification in lacustrine mud shale[J]. Applied Geophysics, 2018, 15(2): 151-164.
[23] LIN Zhongkai, ZHANG Shaolong, LI Chuanhua, et al. Types of shale lithofacies assemblage and its significance for shale oil exploration: A case study of Shahejie Formation in Boxing Sag [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 39-51. 林中凯, 张少龙, 李传华, 等. 湖相页岩油地层岩相组合类型划分及其油气勘探意义: 以博兴洼陷沙河街组为例[J]. 油气藏评价与开发, 2023, 13(1): 39-51.
[24] YONG Rui, SHI Xuewen, LUO Chao, et al. Aulacogen-uplift enrichment pattern and exploration prospect of Cambrian Qiongzhusi Formation shale gas in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2024, 51(6): 1211-1226. 雍锐, 石学文, 罗超, 等. 四川盆地寒武系筇竹寺组页岩气"槽-隆"富集规律及勘探前景[J]. 石油勘探与开发, 2024, 51 (6): 1211-1226.
[25] HE Xiao, ZHENG Majia, LIU Yong, et al. Characteristics and differential origin of Qiongzhusi Formation shale reservoirs under the"aulacogen-uplift"tectonic setting, Sichuan Basin[J]. Oil & Gas Geology, 2024, 45(2): 420-439. 何骁, 郑马嘉, 刘勇, 等. 四川盆地"槽-隆"控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439.
[26] HUANG Lisha, YAN Jianping, LIAO Maojie, et al. Comparison and significance between low- and normal-resistivity shales of Wufeng-Longmaxi Formation in Changning area, southern Sichuan Basin[J]. Energy & Fuels, 2024, 38(15): 14324-14333.
[27] GAO Ping, LI Shuangjian, LASH G G, et al. Stratigraphic framework, redox history, and organic matter accumulation of an Early Cambrian intraplat from basin on the Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2021, 130: 105095.
[28] XIONG Min, CHEN Lei, CHEN Xin, et al. Characteristics, genetic mechanism, and shale gas significance of marine shale bedding[J]. Journal of Central South University(Science and Technology), 2022, 53(9): 3490-3508. 熊敏, 陈雷, 陈鑫, 等. 海相页岩纹层特征、成因机理及其页岩气意义[J]. 中南大学学报(自然科学版), 2022, 53(9): 3490-3508.
[29] KANG Jiahao, WANG Xingzhi, XIE Shengyang, et al. Lithofacies types and reservoir characteristics of shales of Jurassic Da' anzhai member in central Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(4): 53-65. 康家豪, 王兴志, 谢圣阳, 等. 川中地区侏罗系大安寨段页岩岩相类型及储层特征[J]. 岩性油气藏, 2022, 34(4): 53-65.
[30] HUANG Lisha, YAN Jianping, LIU Mingjie, et al. Diagenetic facies logging identification and application of deep tight sandstone gas reservoir: A case study of the third member of Xujiahe formation in Dayi area of western Sichuan depression[J]. Journal of China University of Mining & Technology, 2022, 51(1): 107-123. 黄莉莎, 闫建平, 刘明洁, 等. 深层致密砂岩气储层成岩相测井识别及应用: 以川西坳陷大邑须家河组须三段为例[J]. 中国矿业大学学报, 2022, 51(1): 107-123.
[31] LI Yuegang, ZHOU Anfu, XIE Wei, et al. Lithofacies division and main controlling factors of reservoir development in Wufeng Formation-Long11 sub-member shale in the Luzhou region, south Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 112-123. 李跃纲, 周安富, 谢伟, 等. 四川盆地南部泸州地区五峰组- 龙一1亚段页岩岩相划分及储层发育主控因素[J]. 天然气工业, 2022, 42(8): 112-123.
[32] CAI Yuwen, WANG Huajian, WANG Xiaomei, et al. Formation conditions and main controlling factors of uranium in marine source rocks[J]. Advances in Earth Science, 2017, 32(2): 199-208. 蔡郁文, 王华建, 王晓梅, 等. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[33] ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
[34] WU Dong, DENG Hucheng, XIONG Liang, et al. Sequence filling and evolutionary model of the Lower Cambrian MaidipingQiongzhusi formations in Sichuan Basin and on its periphery [J]. Oil & Gas Geology, 2023, 44(3): 764-777. 吴冬, 邓虎成, 熊亮, 等. 四川盆地及其周缘下寒武统麦地坪组-筇竹寺组层序充填和演化模式[J]. 石油与天然气地质, 2023, 44(3): 764-777.
[35] WANG Xiwei, ZHANG Jinchuan, ZHAO Rongrong, et al. Siliceous origin of the Cambrian Qiongzhusi Formation shale in the middle part of the upper Yangtze Platform: Significance of organic matter enrichment[J]. ACS Omega, 2023, 8(28): 25358-25369.
[36] GU Jiuxiang, WANG Zhenhua, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377.
[37] GAO Fei, QU Zhipeng, WEI Zhen, et al. Study on well-log lithofacies classification based on machine learning methods [J]. Progress in Geophysics, 2024, 39(3): 1173-1192. 高飞, 曲志鹏, 魏震, 等. 基于机器学习方法的测井岩相分类研究[J]. 地球物理学进展, 2024, 39(3): 1173-1192.
[38] LIU Yi, CAO Jianjun, DIAO Xingchun, et al. Survey on stability of feature selection[J]. Journal of Software, 2018, 29(9): 2559-2579. 刘艺, 曹建军, 刁兴春, 等. 特征选择稳定性研究综述[J]. 软件学报, 2018, 29(9): 2559-2579.
[39] LIU Zhongquan, ZENG Zhiping, TIAN Jijun, et al. Genesis and distribution prediction of sweet spots of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 2022, 34 (3): 15-28. 柳忠泉, 曾治平, 田继军, 等. 吉木萨尔凹陷二叠系芦草沟组"甜点"成因与分布预测[J]. 岩性油气藏, 2022, 34(3): 15-28.
[40] ROBERTO A. Shale gas reservoirs: Theoretical, practical and research issues[J]. Petroleum Research, 2016, 1(1): 10-26.
[41] ZOU Caineng, ZHU Rukai, CHEN Zhongqiang, et al. Organicmatter-rich shales of China[J]. Earth-Science Reviews, 2019, 189: 51-78.
[42] WANG Yuqi, CHEN Dongxia, WANG Yuchao, et al. Characteristics and controlling factors of pores in different shale lithofacies reservoirs of Lower Cambrian Qiongzhusi Formation, southwestern Sichuan Basin, China[J]. Minerals, 2023, 13(11): 1442.
[43] SHI Can, LIN Botao. Principles and influencing factors for shale formations[J]. Petroleum Science Bulletin, 2021, 6(1): 92-113. 史璨, 林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨[J]. 石油科学通报, 2021, 6(1): 92-113.
[44] ZHOU Shunlin, YIN Shuai, WANG Fengqin, et al. Experimental analysis of the effect of stress on shale reservoir brittleness and its application[J]. Petroleum Drilling Techniques, 2017, 45 (3): 113-120. 周顺林, 尹帅, 王凤琴, 等. 应力对泥页岩储层脆性影响的试验分析及应用[J]. 石油钻探技术, 2017, 45(3): 113-120.
[45] Shale Gas Standardization Technical Committee of Energy Industry. Shale brittleness index testing and evaluation methods: NB/T 10248-2019[S]. Beijing: Petroleum Industry Press, 2019. 能源行业页岩气标准化技术委员会. 页岩脆性指数测定及评价方法: NB/T 10248-2019[S]. 北京: 石油工业出版社, 2019.
[46] HUANG Lisha, YAN Jianping, HU Xingzhong, et al. Characteristics analysis and its enlightenment of shale of low resistivity in Wufeng-Longmaxi Formation in southern Sichuan Basin [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(2): 26-40. 黄莉莎, 闫建平, 胡兴中, 等. 川南五峰组-龙马溪组低阻页岩特征分析及启示[J]. 西南石油大学学报(自然科学版), 2024, 46(2): 26-40.
[47] YAN Jianping, LUO Jingchao, SHI Xuewen, et al. Fracture development models and significance of Ordovician WufengSilurian Longmaxi shale in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(6): 60-71. 闫建平, 罗静超, 石学文, 等. 川南泸州地区奥陶系五峰组- 志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71.
[48] ZHANG Yancong, LIU Xiangui, HU Zhiming, et al. Numerical simulation on volume development assess production capacity of gas-shale horizontal wells[J]. Science Technology and Engineering, 2020, 20(27): 11092-11098. 张彦从, 刘先贵, 胡志明, 等. 页岩气水平井体积开发产能评价模拟[J]. 科学技术与工程, 2020, 20(27): 11092-11098
[1] 李勇, 张亚, 周刚, 屈海洲, 龙虹宇, 李成龙, 张驰, 陈迪. 四川盆地蓬莱气田寒武系龙王庙组优质储层特征及主控因素[J]. 岩性油气藏, 2025, 37(6): 35-47.
[2] 罗冰, 周刚, 马奎, 王文之, 徐少立, 武鲁亚, 王玥蕴, 张新. 四川盆地德阳—安岳裂陷西侧震旦系灯四段储层特征及成藏主控因素[J]. 岩性油气藏, 2025, 37(5): 49-58.
[3] 王振, 王兴志, 朱逸青, 杨雨然, 杨一茗, 康家豪, 黄柏文, 吕豪. 四川盆地德阳—安岳裂陷槽寒武系筇竹寺组地层划分及勘探意义[J]. 岩性油气藏, 2025, 37(5): 97-110.
[4] 王青, 田冲, 罗超, 张景缘, 杨雪, 吴伟, 陶夏妍. 四川盆地遂宁—合江地区二叠系龙潭组煤岩气储层特征及勘探前景[J]. 岩性油气藏, 2025, 37(4): 26-37.
[5] 邢倩, 李杨凡, 李翔, 万子千, 李雅兰. 川北米仓山地区寒武系仙女洞组碳酸盐岩储集特征及主控因素[J]. 岩性油气藏, 2025, 37(4): 50-62.
[6] 王敬朝, 金玮, 常立朋, 董忠良, 王高文. 川中合川—潼南地区二叠系茅三段岩溶储层特征及油气成藏过程[J]. 岩性油气藏, 2025, 37(4): 63-72.
[7] 闫伟涛, 廖芸, 黄文明, 张本健, 胡欣, 李文正, 吴娟, 邓宾. 川西南二叠系栖霞组多期流体活动特征及成藏过程[J]. 岩性油气藏, 2025, 37(4): 73-83.
[8] 杨雪, 杨雨然, 张景缘, 田鹤, 王青, 宋芳, 张赛柯, 陈瑶. 川北地区开江—梁平海槽二叠系海相页岩特征及优质储层形成机制[J]. 岩性油气藏, 2025, 37(3): 108-119.
[9] 赵艾琳, 赖强, 樊睿琦, 吴煜宇, 陈杰, 严双栏, 张家伟, 廖广志. 基性火山岩核磁共振响应机理及孔隙结构评价方法——以四川盆地西南部二叠系峨眉山玄武岩组为例[J]. 岩性油气藏, 2025, 37(3): 153-164.
[10] 张庆龙, 毛元元, 冯建松, 袁学生, 周微, 朱福金, 轩玲玲. 裂缝-孔隙型碳酸盐岩油藏加密井井位部署新方法——以渤海湾盆地黄骅坳陷唐海油田寒武系油藏为例[J]. 岩性油气藏, 2025, 37(3): 165-175.
[11] 刘勇, 刘永旸, 赵圣贤, 尹美璇, 李博, 陈雷, 吴帅材, 谢圣阳. 泸州—渝西地区志留系龙马溪组沉积期古地貌特征及控储作用[J]. 岩性油气藏, 2025, 37(2): 49-59.
[12] 李凌, 邓禹, 张新宇, 罗文军, 赵东方, 曾建军, 刘耘, 谭秀成. 川中蓬莱—高磨地区震旦系灯二段泡沫绵层白云岩成因及地质意义[J]. 岩性油气藏, 2025, 37(2): 60-69.
[13] 李亚, 王尉, 赵立可, 刘冉, 张玺华, 陈延贵, 黄天海, 肖笛. 四川盆地德阳—绵阳凹陷南缘二叠系栖霞组沉积演化及有利储层分布[J]. 岩性油气藏, 2025, 37(2): 81-91.
[14] 吴冠桦, 刘宏, 宋林珂, 曾琪, 杨涛. 四川盆地西南部东瓜场地区侏罗系沙溪庙组沉积特征及有利储层预测[J]. 岩性油气藏, 2025, 37(2): 92-102.
[15] 张坤, 刘宏, 谭磊, 梁锋, 王立恩, 马梓珂, 刘博文, 杨孟祥. 川中北部蓬莱地区震旦系灯影组二段地震沉积学特征[J]. 岩性油气藏, 2025, 37(2): 189-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!