岩性油气藏 ›› 2015, Vol. 27 ›› Issue (3): 26–31.doi: 10.3969/j.issn.1673-8926.2015.03.004

• 油气地质 • 上一篇    下一篇

柴达木盆地柴西地区古近系—新近系致密油勘探潜力分析

万传治1,王 鹏2,薛建勤2,苏雪迎3,周 刚2,苟迎春1   

  1.  1. 中国石油勘探开发研究院 西北分院,兰州 730020 ; 2. 中国石油青海油田分公司 勘探开发研究院,甘肃 敦煌 736202 ; 3. 中国石油大学(北京) 地球科学学院,北京 102200 )
  • 出版日期:2015-05-26 发布日期:2015-05-26
  • 第一作者:万传治( 1980- ),男,高级工程师,主要从事石油天然气地质综合研究方面的工作。 地址:( 730020 )甘肃省兰州市城关区雁儿湾路 535号。 E-mail : wan_cz@petrochina.com.cn 。
  • 基金资助:

    中国石油重大科技专项“柴达木盆地石油勘探领域评价与目标优选”(编号: 2011E-0301 )资助

Exploration potential of tight oil of the Paleogene and Neogene in western Qaidam Basin

WAN Chuanzhi1, WANG Peng2, XUE Jianqin2, SU Xueying3, ZHOU Gang2, GOU Yingchun1   

  1.  1. PetroChina Research Institute of Petroleum Exploration and Development-Northwest , Lanzhou 730020 , China ; 2. Research Institute of Exploration and Development , PetroChina Qinghai Oilfield Company , Dunhuang 736202 , Gansu , China ;3. College of Geosciences , China University of Petroleum ( Beijing ), Beijing 102200 , China
  • Online:2015-05-26 Published:2015-05-26

摘要:

柴达木盆地柴西地区古近系下干柴沟组与新近系上干柴沟组地层均具备致密油形成的基本地质条件。 柴西地区下干柴沟组上段有效烃源岩有机碳质量分数为 0.8%~2.0%,有机质类型以Ⅰ—Ⅱ1 型为主;上干柴沟组有效烃源岩有机碳质量分数为 0.6%~1.5%,有机质类型以Ⅰ—Ⅱ1 型为主。 热模拟实验表明,柴西地区古近系—新近系在烃源岩镜质体反射率(Ro)为 0.47%~1.30%时为主要生油阶段,Ro 为 0.75% 时达到最大液态烃产率,具有烃源岩在低成熟阶段即可大量生烃并迅速排烃的特点。沉积相研究认为,古近系下干柴沟组和新近系上干柴沟组广泛发育的半深湖—深湖相烃源岩和与其互层沉积的滨浅湖相砂体或碳酸盐岩,构成了对致密油形成非常有利的源储共生关系,而古构造斜坡区和生油凹陷中心是致密油富集分布区。优选柴西地区新近系扎哈泉凹陷—乌南斜坡区上干柴沟组、南翼山—小梁山区带上干柴沟组—下油砂山组、七个泉—跃进斜坡区下干柴沟组上段为致密油三大有利勘探区带。

关键词: 致密油, 资源潜力, 古近系, 新近系, 柴达木盆地

Abstract:

The Paleogene Lower Ganchaigou Formation and Neogene Upper Ganchaigou Formation in the western Qaidam Basin have the basic geological conditions to form tight oil. The organic carbon content of effective hydrocarbon source rocks in the upper segment of Lower Ganchaigou Formation is between 0.8% and 2.0%, and the type of organic matter is mainly Ⅰ-Ⅱ1. The organic carbon content of effective hydrocarbon source rocks in Upper Ganchaigou Formation is between 0.6% and 1.5%, and the type of organic matter is mainly Ⅰ-Ⅱ1. Thermal simulation experiment shows that it is in the main stage of hydrocarbon generation of Paleogene-Neogene in western Qaidam Basin when the Ro of source rocks is between 0.47% and 1.30%, and liquid hydrocarbon yield reaches maximum when Ro is 0.746%. Sedimentary facies study indicates that extensively developed semi deep-deep lake facies source rocks of the Paleogene Lower Ganchaigou Formation and Neogene Upper Ganchaigou Formation has source-reservoir symbiotic relation with shore shallow lake facies sand bodies or carbonate rocks, which is beneficial to form tight oil, and ramp area of paleostructure and the center of source sag are favorable for tight oil enrichment. The Neogene Upper Ganchaigou Formation in Zhahaquan Sag-Wunan ramp area, Upper Ganchaigou Formation and Lower Youshashan Formation in NanyishanXiaoliangshanarea and the upper segment of Lower Ganchaigou Formation in Qigequan-Yuejin ramp area are the three favorable exploration zones for tight oil.

Key words: tight oil, resources potential, Paleogene, Neogene, western Qaidam Basin

[1]赵政璋,杜金虎,邹才能,等.非常规油气资源现实的勘探开发领域———致密油气[M].北京:石油工业出版社,2012.

Zhao Zhengzhang,Du Jinhu,Zou Caineng,et al. Unconventional oil and gas resources reality of exploration and development fields— The density of oil and gas[M]. Beijing:Petroleum Industry Press,2012.

[2]付锁堂,张道伟,薛建勤,等.柴达木盆地致密油形成的地质条件及勘探潜力分析[J].沉积学报,2013,31(4):672-680.

Fu Suotang,Zhang Daowei,Xue Jianqin,et al. Exploration potential and geological conditions of tight oil in the Qaidam Basin[J]. Acta sedimentologica sinica,2013,31(4):672-682.

[3]邹才能,陶士振,侯连华,等.非常规油气地质[M].北京:地质出版社,2011:1-310.

Zou Caineng,Tao Shizhen,Hou lianhua,et al. Unconventional petroleum geology[M]. Beijing:Geology Press,2011:1-310.

[4] 关德师,牛嘉玉,郭丽娜,等.中国非常规油气地质[M].北京:石油工业出版社,1995.

Guan Deshi,Niu Jiayu,Guo li’na et al. Unconventional oil and gas geology in China[M]. Beijing:Petroleum Industry Press,1995.

[5] 邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.

Zou Caineng,Dong Dazhng,Wang Shejia,et al. Geological characteristics,formation mechanism and resource potential of sheale gas in Chian[J]. Petoleum Exploration and Development,2010,37(6): 641-653.

[6] 马达德,寿建峰,胡勇,等.柴达木盆地柴西南区碎屑岩储层形成的主控因素分析[J].沉积学报,2005,23(4):589-595.

Ma Dade,Shou Jianfeng,Hu Yong,et al. Analysis of the main controlling factors on the formation of clastic reservoirs in the southwestern area of the Qaidam Basin[J]. Acta Sedimentologica Sinica,2005, 23(4):589-595.

[7] 杨超,陈清华,任来义,等.柴达木盆地构造单元划分[J].西南石油大学学报:自然科学版,2012,34(1):25-33.

Yang Chao,Chen Qinghua,Ren Laiyi,et al. Tectonic units of the Qaidam Basin[J]. Journal of Southwest Petroleum University:Science & Technology Edition,2012,34(1):25-33.

[8] 林承焰,刘伟,刘键,等.柴达木盆地油泉子油田中孔低渗型藻灰岩储层测井评价[J].西安石油大学学报:自然科学版,2009,24(1):25-28.Lin Chengyan,Liu Wei,Liu Jian,et al. Well logging evaluation of the algal limestone reservoirs with middle-porosity and low-permeability in Youquanzi Oilfield of Qaidam Basin [J]. Journal of Xi’an Petroleum University:Natural Science Edition,2009,24(1): 25-28.

[9] 党玉琪,熊继辉,刘震,等.柴达木盆地油气成藏的主控因素[J].石油与天然气地质,2004,25(6):614-619.

Dang Yuqi,Xiong Jihui,Liu Zhen,et al. Main factors controlling hydrocarbon accumulation in Qaidam basin[J]. Oil & Gas Geology, 2004,25(6):614-619.

[10] 陈子炓,寿建峰,斯春松,等.柴达木盆地花土沟油区上干柴沟组—下油砂山组碳酸盐岩储层特征[J].成都理工学院学报,2001,28(1):53-58.

Chen Ziliao,Shou Jianfeng,Si Chunsong,et al. Carbonates reservoir features of Shangganchaigou to Xiayoushashan Formation in Huatugou area,Qaidam Basin[J]. Journal of Chengdu Institute of Technology, 2001,28(1):53-58.

[11] 陈启林.大型咸化湖盆地层岩性油气藏有利条件与勘探方向———以柴达木盆地柴西南古近纪为例[J].岩性油气藏,2007,19(1):46-51.

Chen Qilin. Favorable condition and exploration prospecting of lithologic hydrocarbon reservoir in large-scale saline basin Case study on the Eogene in the southwest of Qaidam Basin[J]. Lithologic reservoirs,2007,19(1):46-51.

[1] 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148.
[2] 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86.
[3] 杨为华. 松辽盆地双城断陷白垩系营城组四段致密油成藏主控因素及模式[J]. 岩性油气藏, 2024, 36(4): 25-34.
[4] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[5] 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70.
[6] 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95.
[7] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[8] 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136.
[9] 钟会影, 余承挚, 沈文霞, 毕永斌, 伊然, 倪浩铭. 考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征[J]. 岩性油气藏, 2024, 36(3): 172-179.
[10] 方旭庆, 钟骑, 张建国, 李军亮, 孟涛, 姜在兴, 赵海波. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏, 2024, 36(3): 19-30.
[11] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[12] 牛成民, 惠冠洲, 杜晓峰, 官大勇, 王冰洁, 王启明, 张宏国. 辽中凹陷西斜坡古近系东三段湖底扇发育模式及大油田发现[J]. 岩性油气藏, 2024, 36(2): 33-42.
[13] 李盛谦, 曾溅辉, 刘亚洲, 李淼, 焦盼盼. 东海盆地西湖凹陷孔雀亭地区古近系平湖组储层成岩作用及孔隙演化[J]. 岩性油气藏, 2023, 35(5): 49-61.
[14] 岳世俊, 刘应如, 项燚伟, 王玉林, 陈汾君, 郑长龙, 景紫岩, 张婷静. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
[15] 胡望水, 高飞跃, 李明, 郭志杰, 王世超, 李相明, 李圣明, 揭琼. 渤海湾盆地廊固凹陷古近系沙河街组油藏单元精细表征[J]. 岩性油气藏, 2023, 35(5): 92-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .