岩性油气藏 ›› 2015, Vol. 27 ›› Issue (4): 32–39.doi: 10.3969/j.issn.1673-8926.2015.04.005

• 油气地质 • 上一篇    下一篇

川东南龙马溪组页岩孔隙分形特征

徐 勇1,2,吕成福1 ,陈国俊1,仲佳爱 1,2 ,杨 巍1,2 ,薛莲花1   

  1. 1. 甘肃省油气资源研究重点实验室 / 中国科学院油气资源研究重点实验室,兰州 730000 ; 2. 中国科学院大学,北京 100049
  • 出版日期:2015-07-20 发布日期:2015-07-20
  • 第一作者:徐勇( 1986- ),男,中国科学院大学在读博士研究生,研究方向为储层地质学。 地址:( 730000 )甘肃省兰州市城关区东岗西路 382 号。E-mail : xymjjx@163.com。
  • 基金资助:

    国家自然科学基金项目“鄂尔多斯盆地三叠系陆相页岩微孔隙特征与天然气赋存方式研究”(编号:41272144)和中国科学院战略性先导科技专项(B 类)页岩气勘探开发基础理论与关键技术”(编号:XDB10010300)联合资助

Fractal characteristics of shale pores of Longmaxi Formation in southeast Sichuan Basin

Xu Yong1,2, Lu Chengfu1, Chen Guojun1, Zhong Jiaai1,2, Yang Wei1,2, Xue Lianhua1   

  1. 1. Key Laboratory of Petroleum Resources , Gansu Province/Key Laboratory of Petroleum Resources Research ,Institute of Geology and Geophysics , Chinese Academy of Sciences , Lanzhou 730000 , China ; 2. University of Chinese Academy of Sciences , Beijing 100049 , China
  • Online:2015-07-20 Published:2015-07-20

摘要:

基于低温氮气吸附分形几何学研究方法,对川东南龙马溪组页岩储层进行了孔隙分形特征研究,并运用分形 FHH 模型计算了孔隙分形维数,讨论了分形维数与孔隙结构、有机碳含量、页岩矿物成分之间的关系。 研究表明:川东南龙马溪组页岩以中孔为主,孔隙内部特征以墨水瓶状孔和狭缝状孔为主;页岩样品分形维数为 2.629 2~2.898 0,反映了页岩孔隙结构复杂和非均质性强的特征;页岩平均孔径越小、微小孔隙越多,孔隙结构越复杂,孔表面越不规则,比表面积和分形维数则越大;有机碳含量和微孔发育程度对分形维数影响较大。通过分形维数可定量描述孔隙结构的复杂程度和不均一性,为研究页岩孔隙结构的分布特征提供了思路。

关键词: 页岩气, 应力敏感, 吸附, 多尺度流动, 克努森数

Abstract:

Based on fractal theory and methods and the nitrogen adsorption results of shale samples from the Lower Silurian Longmaxi Formation in southeast Sichuan Basin, the fractal characteristics of pores were studied, the fractal dimension was calculated by using the fractal Frenkel-Halsey-Hill(FHH) model, and the relations of fractal dimension with pore structure, organic carbon content and shale composition were discussed. The results show that mesopores are the main pores in shale, and mainly consist of ink-bottle-like and slit-shaped pore. The fractal dimension of shale samples is between 2.629 2 and 2.898 0, which reflects the complexity and heterogeneity of the shale porosity. The smaller the average pore diameter is, the more the micropores are, the more complex the pore structure is, the more irregular the specific shale face is, the larger the specific surface face is, and the higher the fractal dimension is. Organic carbon content and the degree of micropore development impact a lot on the fractal dimension.

Key words: shale gas, stress sensitivity, adsorption, multi-scale flow, Knudsen number

[ 1 ] Curtis M E , Cardott B J , Songdergeld C H , et al. Development of organicporosityintheWoodfordshalewith increasing thermal maturity [ J ] . International Journal of Coal Geology , 2012 , 103 : 26-31.

[ 2 ] 胡海燕 . 富有机质 Woodford 页岩孔隙演化的热模拟实验[ J ] . 石油学报, 2013 , 34 ( 5 ): 820-825 .

Hu Haiyan. Porosity evolution of the organic-rich shale with thermal maturity increasing [ J ] . Acta Petrolei Sinica , 2013 , 34 ( 5 ): 820-825.


[ 3 ] 聂海宽,边瑞康,张培,等 . 川东南地区下古生界页岩储层微观类型与特征及其对含气量的影响[ J ] . 地学前缘, 2014 , 21 ( 4 ):331-343.

Nie Haikuan , Bian Ruikang , Zhang Peixian , et al. Study micro-types characteristics of shale reservoir of the lower Paleozoic in southeast Sichuan basin , and their effects on the gas content [ J ] . Earth Science Frontiers , 2014 , 21 ( 4 ): 331-343.

[ 4 ] 杨峰,宁正福,胡昌蓬,等 . 页岩储层微观孔隙结构特征[ J ] . 石油学报, 2013 , 34 ( 2 ): 301-311.

Yang Feng , Ning Zhengfu , Hu Changpeng , et al. Characterization of microscopic pore structures in shale reservoirs [ J ] . Acta Petrolei Sinica ,2013 , 34 ( 2 ): 301-311.

[ 5 ] 徐祖新 . 基于 CT 扫描图像的页岩储层非均质性研究[ J ] . 岩性油气藏, 2014 , 26 ( 6 ): 46-49.

Xu Zuxin. Heterogeneity of shale reservoirs based on CT images [ J ] .Lithologic Reservoirs , 2014 , 26 ( 6 ): 46-49.

[ 6 ] Mastalerz M , Schimmelmann A , Drobniak A , et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient :

Insights from organic petrology , gas adsorption , and mercury intrusion [ J ] . AAPG Bulletin , 2013 , 97 : 1621-1643.

[ 7 ] Ross D J K , Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs [ J ] .Marine and Petroleum Geology , 2009 , 26 ( 6 ): 916 -927.

[ 8 ] 王玉满,董大忠,杨桦,等 . 川南下志留统龙马溪组页岩储集空间定量表征[ J ] . 中国科学:地球科学, 2014 , 44 ( 6 ): 1348-1356.

Wang Yuman , Dong Dazhong , Yang Hua , et al. Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale ,southern Sichuan [ J ] . Science China : Earth Sciences , 2014 , 44 ( 6 ):1348-1356.

[ 9 ] Loucks R G , Reed RM , Ruppel S C , et al. Spectrum of pore types and networks in mudrocks and adescriptives classification for matrix-related mudrocks pores [ J ] . AAPG Bulletin , 2012 , 96 ( 6 ): 1071-1098.

[ 10 ] Gregg S J , Sing K S W. Adsorption, surface area and porosity [ M ] .2nd Edition. London : Academic Press , 1982.

[ 11 ] 何建华,丁文龙,付景龙,等 . 页岩微观孔隙成因类型研究[ J ] . 岩性油气藏, 2014 , 26 ( 5 ): 40-45.

He Jianhua , Ding Wenlong , Fu Jinglong , et al. Study on genetic type of micropore in shale reservoir [ J ] . Lithologic Reservoirs , 2014 , 26( 5 ): 40-45.

[ 12 ] 田华,张水昌,柳少波,等 . 压汞法和气体吸附法研究富有机质页岩孔隙特征[ J ] . 石油学报, 2012 , 33 ( 3 ): 419-427.

Tian Hua , Zhang Shuichang , Liu Shaobo , et al. Determination of organic-richshaleporefeatures by mercury injection and gas adsorption methods [ J ] . Acta Petrolei Sinica , 2012 , 33 ( 3 ): 419-427.

[ 13 ] 郝乐伟,王琪,唐俊 . 储层岩石微观孔隙结构研究方法与理论综述[ J ] . 岩性油气藏, 2013 , 25 ( 5 ): 123-128.

Hao Lewei , Wang Qi , Tang Jun. Research progress of reservoir microscopic pore structure [ J ] . Lithologic Reservoirs , 2013 , 25 ( 5 ):123-128.

[ 14 ] 崔景伟,邹才能,朱如凯,等 . 页岩孔隙研究新进展[ J ] . 地球科学进展, 2012 , 27 ( 12 ): 1319-1325.

Cui Jingwei , Zou Caineng , Zhu Rukai , et al. New advances in shale porosity research [ J ] . Advances in Earth Science , 2012 , 27 ( 12 ):1319-1325.

[ 15 ] 焦堃,姚素平,吴浩,等 . 页岩气储层孔隙系统表征方法研究进展[ J ] . 高校地质学报, 2014 , 20 ( 1 ): 151-161.

Jiao Kun , Yao Suping , Wu Hao , et al. Advances in characterization of poresystemofgasshales [ J ] .GeologicalJournalofChinaUniversities ,2014 , 20 ( 1 ): 151-161.

[ 16 ] 杨正红 . 气体吸附法进行孔径分析进展—— — 密度函数理论( DFT )及蒙特卡洛法( MC )的应用[ J ] . 中国粉体工业, 2005 ( 6 ): 36-42.

Yang Zhenghong. Density functional theory ( DFT ) and the Monte Carlo method ( MC ) applications-pore distribution analyze progress in gas adsorption [ J ] . China Powder Industry , 2005 ( 6 ): 36-42.

[ 17 ] Pfeifer P , Avnir D. Chemistry in nointegral dimensions between two and three [ J ] . ChemPhys , 1983 , 79 ( 7 ): 3369-3558.

[ 18 ] Krohn C E. Sandstone fractal and euclidean pore volume distributions [ J ] . GeophysRes , 1988 , 93 ( B4 ): 3286-3296.

[ 19 ] 傅雪海,秦勇,薛秀谦,等 . 煤储层孔、裂隙系统分形研究[ J ] .中国矿业大学学报:自然科学版, 2001 , 30 ( 3 ): 225-228.

Fu Xuehai , Qin Yong , Xue Xiuqian , et al. Research on fractals of pore and fracture-structure of coal reservoirs [ J ] . Journal of China University of Mining & Technology , 2001 , 30 ( 3 ): 225-228.

[ 20 ] 徐如人,庞文琴,于吉红,等 . 分子筛与多孔材料化学[ M ] . 北京:科学出版社, 2004.

Xu Ruren , Pang Wenqin , Yu Jihong , et al. chemistry-zeolites and porous materials [ M ] . Beijing : Science Press , 2004.

[ 21 ] 杨宇,孙晗森,彭小东,等 . 煤层气储层孔隙结构分形特征定量研究[ J ] . 特种油气藏, 2013 , 20 ( 1 ): 31-33.

Yang Yu , Sun Hansen , Peng Xiaodong , et al. Quantitative study on fractal characteristics of the structure of CBM reservoir [ J ] . Special Oil & Gas Reservoir , 2013 , 20 ( 1 ): 31-33.

[ 22 ] Yin Y B. Adsorption isotherm on fractally porous materials [ J ] . Lang-muir , 1991 , 7 ( 2 ): 216-217.

[ 23 ] 刘义坤,王永平,唐慧敏,等 . 毛管压力曲线和分形理论在储层分类中的应用[ J ] . 岩性油气藏, 2014 , 26 ( 3 ): 89-93.

LiuYikun , WangYongping , TangHuimin , etal.Applicationofcapillary pressure curves and fractal theory to reservoir classification [ J ] .Lithologic Reservoirs , 2014 , 26 ( 3 ): 89-93.

[ 24 ] Patricia T , Nora Y K C , Chan H K , et al. Limitation of determination of surface fractal dimension using N 2 adsorption isotherms and modified frenkel-halsey-hill theory [ J ] . Langmuir , 2003 , 19 ( 7 ):2632-2638.

[ 25 ] 贺承祖,华明琪 . 储层孔隙结构的分形几何描述[ J ] . 石油与天然气地质, 1998 , 19 ( 3 ): 15-23.

He Chengzu , Hua Mingqi. Fractal geometry description of reservoir pore structure [ J ] . Oil & Gas Geology , 1998 , 19 ( 1 ): 15-23.

[ 26 ] Rigby S P. Predicting surface diffusivities of molecules from equili-brium adsorption isotherms [ J ] . Colloids and Surfaces A : Physico-chemical and Engineering Aspects , 2005 , 262 ( 1 ): 139-149.

[ 27 ] Qi H , Ma J , Wong P. Adsorption isotherms of fractal surfaces [ J ] .Colloids and Surfaces A : Physicochemical and Engineering Aspects ,2002 , 206 ( 1 ): 401-407.

[ 28 ] Pyun S I , Rhee C K. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures [ J ] .Electrochimica Acta , 2004 , 49 ( 24 ): 4171-4180.

[ 29 ] 张宪国,张涛,林承焰 . 基于孔隙分形特征的低渗透储层孔隙结构评价[ J ] . 岩性油气藏, 2013 , 25 ( 6 ): 40-45.

Zhang Xianguo , Zhang Tao , Lin Chengyan. Pore structure evaluation of lowpermeabilityreservoirbasedonporefractalfeatures [ J ] .Lithologic Reservoirs , 2013 , 25 ( 6 ): 40-45.

[ 30 ] 宋晓夏,唐跃刚,李伟,等 . 中梁山南矿构造煤吸附孔分形特征[ J ] . 煤炭学报, 2013 , 38 ( 1 ): 134-139.

Song Xiaoxia , Tang Yuegang , LI Wei , et al. Fractal characteristics of adsorption pores of tectonic coal from Zhongliangshan southern coalmine [ J ] . Journal of China Coal Society , 2013 , 38 ( 1 ): 134-139.

[ 31 ] Yao Y , Liu D , Tang D , et al. Fractal characterization of adsorption-pores of coals from North China : An investigation on CH 4 adsorption capacity of coals [ J ] . International Journal of Coal Geology , 2008 , 73( 1 ): 27-42.

[ 32 ] Loucks R G , Reed R M , Ruppel S C , et al. Morphology , genesis , and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale [ J ] . Journal of Sedimentary Research ,2009 , 79 ( 12 ): 848-861.

[1] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[2] 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188.
[3] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[4] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[5] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[6] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[7] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[8] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[9] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[10] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[11] 魏全超, 李小佳, 李峰, 郝景宇, 邓双林, 吴娟, 邓宾, 王道军. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70.
[12] 杨跃明, 张少敏, 金涛, 明盈, 郭蕊莹, 王兴志, 韩璐媛. 川南地区二叠系龙潭组页岩储层特征及勘探潜力[J]. 岩性油气藏, 2023, 35(1): 1-11.
[13] 夏青松, 陆江, 杨鹏, 张昆, 杨朝屹, 聂俊杰, 朱云舫, 李立芳. 柴达木盆地英西地区渐新统下干柴沟组上段储层微观孔隙结构特征[J]. 岩性油气藏, 2023, 35(1): 132-144.
[14] 闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71.
[15] 张凤奇, 李宜浓, 罗菊兰, 任小锋, 张兰馨, 张芥瑜. 鄂尔多斯盆地西部奥陶系乌拉力克组页岩微观孔隙结构特征[J]. 岩性油气藏, 2022, 34(5): 50-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .