岩性油气藏 ›› 2017, Vol. 29 ›› Issue (2): 125–130.doi: 10.3969/j.issn.1673-8926.2017.02.015

• 技术方法 • 上一篇    下一篇

页岩孔隙结构表征方法新探索

孙文峰1, 李玮1, 董智煜2, 闫铁1, 李悦1, 李世昌1   

  1. 1. 东北石油大学 石油工程学院, 黑龙江 大庆 163318;
    2. 中国石油大庆油田有限责任公司 采油三厂, 黑龙江 大庆 163318
  • 收稿日期:2016-10-08 修回日期:2016-11-25 出版日期:2017-03-21 发布日期:2017-03-21
  • 作者简介:孙文峰(1983-),男,东北石油大学在读博士研究生,研究方向为非常规油气高效开发理论与技术。地址:(163318)黑龙江省大庆市东北石油大学石油工程学院。E-mail:sunwen565656@163.com。
  • 基金资助:
    国家自然科学基金项目“页岩油气高效开发基础理论研究”(编号:51490650)和“十三五”国家重大科技专项“大型油气田及煤层气开发”(编号:2016ZX05020-002)联合资助

A new approach to the characterization of shale pore structure

SUN Wenfeng1, LIWei1, DONG Zhiyi2, YAN Tie1, LI Yue1, LI Shichang1   

  1. 1. College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. No. 3 Oil Production Plant, PetroChina Daqing Oilfield Com., Ltd., Daqing 163318, Heilongjiang, China
  • Received:2016-10-08 Revised:2016-11-25 Online:2017-03-21 Published:2017-03-21

摘要: 孔隙结构对页岩储层的储集性能、渗流能力和页岩气产能具有十分重要的影响,是页岩储层评价的核心内容。为全面、直观地展现页岩储层孔隙结构的空间特征,选取川南龙马溪组页岩为研究对象,先运用MATLAB自编程序识别扫描电镜(SEM)二值图像的方法,测得不同孔隙面积与相应的面孔率数值,拟合得到了岩样的面孔率函数;再利用积分几何理论建立了面孔率函数与孔隙度函数之间的换算模型,计算得到了岩样的孔隙度与孔径之间的函数关系,并据此对龙马溪组页岩孔隙结构进行了定量分析。结果表明:川南龙马溪组页岩岩样的孔径主要为1~50 nm,孔隙度峰值出现在孔径为13 nm处,中孔是孔隙的主体,占总孔隙空间的93.7%。与高压压汞实验和低温氮气吸附实验结果比较,SEM 图像观测法所得结果可靠,验证了该方法的可行性。该方法不仅适用于页岩储层,也适用于其他致密储层。

Abstract: The pore structure is the core content of shale reservoir evaluation,which has important influence on the reservoir performance,seepage capacity and shale gas productivity. In order to show the spatial characteristics of pore structure in shale reservoir comprehensively and visually,MATLAB programming was used to identify scanning electronic microscope(SEM)binary image of samples from Longmaxi shale in southern Sichuan Basin,by which different pore area and corresponding plane porosity were obtained,and the plane porosity function was fitted. Then,the conversion model between the 2D porosity function and the porosity function was established by applying the integral geometry theory. The function relationship between the porosity and the pore size was calculated and the shale pore structure of the Longmaxi Formation was analyzed quantitatively. The results show that the pore size ranges from 1 to 50 nm,13 nm corresponds to the MAX porosity,the volume fraction of mesopores is the most(93.7%). Compared with the results of high pressure mercury intrusion and low temperature nitrogen adsorption experiments,the result obtained by SEM image method is reliable,which verifies the feasibility of this method. The method is applicable for shale and tight reservoirs.

中图分类号: 

  • TE132.2
[1] ROSS D J K,BUSTIN R M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the western Canada sedimentary basin:application of an integrated formation evaluation. AAPG Bulletin,2008,92(1):87-125.
[2] 张金川,林腊梅,李玉喜,等. 页岩气资源评价方法与技术:概 率体积法.地学前缘,2012,19(2):184-191. ZHANG J C,LIN L M,LI Y X,et al. The method of shale gas assessment:probability volume method. Earth Science Frontiers, 2012,19(2):184-191.
[3] 顾忠安,郑荣才,王亮,等. 渝东涪陵地区大安寨段页岩储层 特征研究.岩性油气藏,2014,26(2):67-73. GU Z A,ZHENG R C,WANG L,et al. Characteristics of shale reservoir of Da'anzhai segment in Fuling area eastern Chongqing. Lithologic Reservoirs,2014,26(2):67-73.
[4] 毛志强,张冲,肖亮. 一种基于核磁共振测井计算低孔低渗气 层孔隙度的新方法.石油地球物理勘探,2010,45(1):105-109. MAO Z Q,ZHANG C,XIAO L. A NMR-based porosity calculation method for low porosity and low permeability gas reservoir. Oil Geophysical Prospecting,2010,45(1):105-109.
[5] ABU-SHANAB M M,HAMADA G M,ORABY M E,et al. Improved porosity estimation in tight gas reservoirs from NMR and density logs. Emirates Journal for Engineering Research, 2005,10(2):9-13.
[6] 王濡岳,丁文龙,王哲,等. 页岩气储层地球物理测井评价研 究现状. 地球物理学进展,2015,30(1):228-241. WANG R Y,DING W L,WANG Z,et al. Progress of geophysical well logging in shale gas reservoir evaluation. Progress in Geophysics,2015,30(1):228-241.
[7] 何建华,丁文龙,付景龙,等. 页岩微观孔隙成因类型研究. 岩 性油气藏,2014,26(5):30-35. HE J H,DING W L,FU J L,et al. Study on genetic type of micropore in shale reservoir. Lithologic Reservoirs,2014,26(5): 30-35.
[8] 杨峰,宁正福,孔德涛,等. 高压压汞法和氮气吸附法分析页 岩孔隙结构.天然气地球科学,2013,24(3):450-455. YANG F,NING Z F,KONG D T,et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method. Natural Gas Geoscience,2013,24(3):450-455.
[9] 张宪国,张涛,林承焰. 基于孔隙分形特征的低渗透储层孔隙 结构评价.岩性油气藏,2013,25(6):40-45. ZHANG X G,ZHANG T,LIN C Y. Pore structure evaluation of low permeability reservoir based on pore fractal features. Lithologic Reservoirs,2013,25(6):40-45.
[10] CURTIS M E,SONDERGELD C H,AMBROSE R J,et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bulletin,2012,96(4):665-677.
[11] 邹才能,朱如凯,白斌,等. 中国油气储层中纳米孔首次发现 及其科学价值.岩石学报,2011,27(6):1857-1864. ZOU C N,ZHU R K,BAI B,et al. First discovery of nanopore throat in oil and gas reservoir in China and its scientific value. Acta Petrologica Sinica,2011,27(6):1857-1864.
[12] MONTGOMERY S L,JARVIE D M,BOWKER K A,et al. Mississippian Barnett Shale,Fort Worth Basin,north-central Texas:gas-shale play with multi-trillion cubic foot potential. AAPG Bulletin,2005,89(2):155-175.
[13] 王玉满,董大忠,李建忠,等. 川南下志留统龙马溪组页岩气 储层特征.石油学报,2012,33(4):551-561. WANG Y M,DONG D Z,LI J Z,et al. Reservoir characteristics of shale gas in Longmaxi Formation of the Lower Silurian, southern Sichuan. Acta Petrolei Sinica,2012,33(4):551-561.
[14] 郭旭升,李宇平,刘若冰,等. 四川盆地焦石坝地区龙马溪组 页岩微观孔隙结构特征及其控制因素. 天然气工业,2014,34 (6):9-16. GUO X S,LI Y P,LIU R B,et al. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area,Sichuan Basin. Natural Gas Industry,2014, 34(6):9-16.
[15] 聂海宽,张金川.页岩气储层类型和特征研究——以四川盆地 及其周缘下古生界为例.石油实验地质,2011,33(3):219-225. NIE H K,ZHANG J C. Types and characteristics of shale gas reservoir:a case study of Lower Paleozoic in and around Sichuan Basin. Petroleum Geology and Experiment,2011,33(3):219-225.
[16] 鞠杨,杨永明,宋振铎,等. 岩石孔隙结构的统计模型. 中国科 学,2008,38(7):1026-1041. JU Y,YANG Y M,SONG Z D,et al. Statistical model of pore structure of rock. Science in China,2008,38(7):1026-1041.
[17] 李建胜,王东,康天合. 基于显微CT试验的岩石孔隙结构算 法研究. 岩土工程学报,2010,32(11):1703-1708. LI J S,WANG D,KANG T H. Algorithmic study on rock pore structure based on micro-CT experiment. Chinese Journal of Geotechnical Engineering,2010,32(11):1703-1708.
[18] CHALMERS G R,BUSTIN R M,POWER I M. Characterization of gas shale pore systems by porosimetry,pycnometry, surface area,and field emission scanning electron microscopy/ transmission electron microscopy image analyses:examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units. AAPG Bulletin,2012,96(6):1099-1119.
[19] BAGHERZADEH R,LATIFI M,NAJAR S S,et al. Threedimensional pore structure analysis of nano/microfibrous scaffolds using confocal laser scanning microscopy. Journal of Biomedical Materials Research Part A,2013,101(3):765-774.
[20] LIU C S. Counterexamples on Jumarie's two basic fractional calculus formulae. Communications in Nonlinear Science & Numerical Simulation,2015,22(1/2/3):92-94.
[21] MAYS T J. A new classification of pore sizes. Studies in Surfaceence & Catalysi,2007,160(7):57-62.
[22] 谢晓永,唐洪明,王春华,等. 氮气吸附法和压汞法在测试泥 页岩孔径分布中的对比.天然气工业,2006,26(12):100-102. XIE X Y,TANG H M,WANG C H,et al. Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shale's pore size distribution. Natural Gas Industry, 2006,26(12):100-102.
[1] 郭娟, 赵迪斐, 梁孝柏, 杨坤, 李昊轩, 龙代玺. 页岩纳米孔隙的结构量化表征——以川东南地区五峰组为例[J]. 岩性油气藏, 2020, 32(5): 113-121.
[2] 刘俞佐, 石万忠, 刘凯, 王任, 吴睿. 鄂尔多斯盆地杭锦旗东部地区上古生界天然气成藏模式[J]. 岩性油气藏, 2020, 32(3): 56-67.
[3] 侯振学, 陈朕, 牛全兵, 宋光建, 刘延斌. 致密砂岩储层电性特征分析[J]. 岩性油气藏, 2020, 32(2): 100-107.
[4] 黄彦杰, 白玉彬, 孙兵华, 黄礼, 黄昌武. 鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J]. 岩性油气藏, 2020, 32(1): 66-75.
[5] 高乔, 王兴志, 朱逸青, 赵圣贤, 张芮, 肖哲宇. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素[J]. 岩性油气藏, 2019, 31(4): 72-84.
[6] 段治有, 李贤庆, 陈纯芳, 马立元, 罗源. 杭锦旗地区J58井区下石盒子组气水分布及其控制因素[J]. 岩性油气藏, 2019, 31(3): 45-54.
[7] 郑珊珊, 刘洛夫, 汪洋, 罗泽华, 王曦蒙, 盛悦, 许同, 王柏寒. 川南地区五峰组—龙马溪组页岩微观孔隙结构特征及主控因素[J]. 岩性油气藏, 2019, 31(3): 55-65.
[8] 严伟, 刘帅, 冯明刚, 张冲, 范树平. 四川盆地丁山区块页岩气储层关键参数测井评价方法[J]. 岩性油气藏, 2019, 31(3): 95-104.
[9] 李延丽, 王建功, 石亚军, 张平, 徐丽. 柴达木盆地西部盐湖相有效烃源岩测井识别[J]. 岩性油气藏, 2017, 29(6): 69-75.
[10] 闫建平, 梁强, 耿斌, 冯春珍, 寇小攀, 扈勇. 湖相泥页岩地球化学参数测井计算方法及应用——以沾化凹陷渤南洼陷沙三下亚段为例[J]. 岩性油气藏, 2017, 29(4): 108-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .