岩性油气藏 ›› 2017, Vol. 29 ›› Issue (3): 118–125.doi: 10.3969/j.issn.1673-8926.2017.03.014

• 技术方法 • 上一篇    下一篇

上覆水平界面对目的层地震波振幅的影响

邓帅, 刘学伟, 王祥春   

  1. 中国地质大学(北京) 地球物理与信息技术学院, 北京 100083
  • 收稿日期:2016-09-12 修回日期:2017-01-03 出版日期:2017-05-21 发布日期:2017-05-21
  • 第一作者:邓帅(1986-),男,中国地质大学(北京)在读博士研究生,研究方向为地震资料高保真处理技术、GPU高性能计算等。地址:(100083)北京市海淀区学院路29号中国地质大学(北京)。Email:dengshuai23@163.com。
  • 基金资助:
    国家重点基础研究发展计划(973)项目“纵横波品质因子AVO反演方法研究”(编号:41604108)资助

Influence of overlying horizontal stratum on seismic amplitude of target zone

DENG Shuai, LIU Xuewei, WANG Xiangchun   

  1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
  • Received:2016-09-12 Revised:2017-01-03 Online:2017-05-21 Published:2017-05-21

摘要: 地震波振幅属性是识别目的层岩性的重要参数,但该属性受上覆界面的影响较大。为了弄清上覆水平界面对目的层地震波振幅的影响,从正演模型出发,利用双程波动方程进行模拟,研究地震波在不同速度、不同尺度的上覆地层中传播时振幅的变化,建立上覆界面与目的层地震波振幅之间的联系,通过构建包含完美匹配层(PML)边界衰减系数的高阶交错网格有限差分公式,使用GPU进行并行计算加速,最终获得三维层状水平速度模型目的层地震波振幅的变化规律。结果表明,当上覆水平界面的反射系数发生变化时,目的层地震波成像振幅的变化范围及变化趋势都会随之发生相应的改变,尤其当上覆水平界面的反射系数趋于一致时,目的层地震波成像振幅便会发生异常性的变化。该研究成果可为地震资料处理解释过程中正确识别目的层岩性提供一定的理论帮助。

关键词: 煤层气, 沉积相, 聚煤控制因素, 构造古地理, 宣威组, 筠连地区

Abstract: Seismic amplitude is an important parameter to identify the lithology of target zone, however, it is greatly affected by overlying stratum. Based on the forward modeling, the numerical simulation of two-way wave equation was applied to study the amplitude change of seismic wave when it travels through the overlying stratum with different velocity and scale, and the relationship between the overlying stratum structure and seismic amplitude of the target zone was discussed. By building high ordered staggered-grid finite difference algorithm containing PML (perfect matching layer)attenuation coefficient and using GPU parallel acceleration, the amplitude change regularity of the target zone of 3D layered velocity model was defined. The experiment results show that the amplitude of the target zone will change accordingly with the change of reflection coefficient of the overlying stratum, and it will change abnormally especially when the reflection coefficient of overlying stratum tends to be consistent. This study results are favorable for correct lithology identification by seismic data.

Key words: coalbed methane, sedimentary facies, controlling factors of coal accumulation, tectonic- palaeogeography, Xuanwei Formation, Junlian area

中图分类号: 

  • P315.0
[1] 熊翥.地层岩性油气藏勘探.岩性油气藏, 2008, 20(4):1-8. XIONG Z. Exploration of stratigraphic-lithologic reservoirs. Lithologic Reservoirs, 2008, 20(4):1-8.
[2] 桑怀飞, 毕阿欣, 杨世洲.地震勘探仪器数据传输分析.物探装备, 2015, 25(6):372-374. SANG H F, BI A X, YANG S Z. Analysis of seismic data transmission. Equipment for Geophysical Prospecting, 2015, 25(6):372-374.
[3] 王肃静, 卢川, 游庆瑜, 等.一种低成本无缆地震仪采集站的研制.地球物理学报, 2015, 58(4):1425-1433. WANG S J, LU C, YOU Q Y, et al. Design of a low cost noncable seismic acquisition station. Chinese Journal of Geophysics, 2015, 58(4):1425-1433.
[4] 凌云研究组.叠前相对保持振幅、频率、相位和波形的地震数据处理与评价研究. 石油地球物理勘探, 2004, 39(5):543-552. LING YUN Research Group. Study of seismic data processing and appreciation based on prestack relative preservation of amplitude, frequency, phase and waveform. Oil Geophysical Prospecting, 2004, 39(5):543-552.
[5] 刘建红, 孟小红, 程玉坤.针对叠前反演的去噪技术.石油勘探与开发, 2007, 34(6):718-723. LIU J H, MENG X H, CHENG Y K. Pre-stack inversion oriented noise attenuation. Petroleum Exploration and Development, 2007, 34(6):718-723.
[6] 刘东奇, 常旭, 卢孟夏. 目标函数叠前保幅偏移方法与应用. 地球物理学报, 2006, 49(4):1150-1154. LIU D Q, CHANG X, LU M X. Objective function prestack amplitude preserving migration and its application. Chinese Journal of Geophysics, 2006, 49(4):1150-1154.
[7] 张志军, 周东红, 孙成禹, 等.基于三维模型数据的地震振幅补偿处理技术的保幅性分析. 物探与化探, 2015, 39(3):621-626. ZHANG Z J, ZHOU D H, SUN C Y, et al. An analysis of the amplitude preservation of seismic amplitude compensation processing technology based on 3D model data. Geophysical and Geochemical Exploration, 2015, 39(3):621-626.
[8] 李振春, 朱绪峰, 韩文功, 等.真振幅偏移方法综述.勘探地球物理进展, 2008, 31(1):10-15. LI Z C, ZHU X F, HAN W G, et al. Review of true-amplitude migration methods. Progress in Exploration Geophysics, 2008, 31(1):10-15.
[9] 郭树祥. 地震资料保幅处理的讨论. 油气地球物理, 2009, 7(1):1-7. GUO S X. Discussion of preserved amplitude processing of seismic data. Petroleum Geophysics, 2009, 7(1):1-7.
[10] 王丹, 孙赞东, 王迪, 等.基于模型数据的不同反褶积方法保幅性分析.石油地球物理勘探, 2013, 48(3):359-365. WANG D, SUN Z D, WANG D, et al. Analysis of the amplitude preservation of deconvolution methods based on physical model data. Oil Geophysical Prospecting, 2013, 48(3):359-365.
[11] 邓帅, 刘学伟, 尤佳春, 等.上覆地层形态对目的层成像振幅的影响.科学技术与工程, 2016, 16(31):51-56. DENG S, LIU X W, YOU J C, et al. Influence of overlying stratum on amplitude imaging of target interval. Science Technology and Engineering, 2016, 16(31):51-56.
[12] 陈生昌, 马在田, 吴如山.波动方程双程地下方向照明分析. 同济大学学报(自然科学版), 2007, 35(5):681-684. CHEN S C, MA Z T, WU R S. Two-way subsurface directional illumination analysis by wave equation. Journal of Tongji University(Natural Science), 2007, 35(5):681-684.
[13] 陈可洋, 陈树民, 李来林, 等.地震波动方程方向行波波场分离正演数值模拟与逆时成像.岩性油气藏, 2014, 26(4):130-136. CHEN K Y, CHEN S M, LI L L, et al. Directional one-way wave field separating numerical simulation of the seismic wave equation and reverse-time migration. Lithologic Reservoirs, 2014, 26(4):130-136.
[14] 陈可洋. 各向异性弹性介质方向行波波场分离正演数值模拟.岩性油气藏, 2014, 26(5):91-96. CHEN K Y. Wave field separating numerical simulation of anisotropic elastic medium directional one-way wave. Lithologic Reservoirs, 2014, 26(5):91-96.
[15] 辛维, 闰子超, 梁文全, 等.用于弹性波方程数值模拟的有限差分系数确定方法.地球物理学报, 2015, 58(7):2486-2495. XIN W, YAN Z C, LIANG W Q, et al. Methods to determine the finite difference coefficients for elastic wave equation modeling. Chinese Journal of Geophysics, 2015, 58(7):2486-2495.
[16] BERENGER J P. A perfectly matched layer for absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114:185-200.
[17] LI X F. PML absorbing boundary condition for seismic numerical modeling by convolutional differentiator in fluid-saturated porous media. Journal of Earth Science, 2011, 22(3):377-385.
[18] 丁科.PML吸收边界条件影响因素分析.物探与化探, 2012, 36(4):623-627. DING K. An analysis of factors affecting PML absorbing boundary condition. Geophysical and Geochemical Exploration, 2012, 36(4):623-627.
[19] 陈可洋.完全匹配层吸收边界条件研究. 石油物探, 2010, 49(5):472-477. CHEN K Y. Study on perfectly matched layer absorbing boundary condition. Geophysical Prospecting for Petroleum, 2010, 49(5):472-477.
[20] MICHEA D, KOMATITSCH D. Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards. Geophysical Journal International, 2010, 182(1):389-402.
[21] 龙桂华, 赵宇波, 李小凡, 等.三维交错网格有限差分地震波模拟的GPU集群实现.地球物理学进展, 2011, 26(6):1938-1949. LONG G H, ZHAO Y B, LI X F, et al. Accelerating 3D staggeredgrid finite-difference seismic wave modeling on GPU cluster. Progress in Geophysics, 2011, 26(6):1938-1949.
[22] 刘守伟, 王华忠, 陈生昌, 等.三维逆时偏移GPU/CPU机群实现方案研究.地球物理学报, 2013, 56(10):3487-3496. LIU S W, WANG H Z, CHEN S C, et al. Implementation strategy of 3D reverse time migration on GPU/CPU clusters. Chinese Journal of Geophysics, 2013, 56(10):3487-3496.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[3] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[4] 魏嘉怡, 王红伟, 刘刚, 李涵, 曹茜. 鄂尔多斯盆地西缘冲断带石炭系羊虎沟组沉积特征[J]. 岩性油气藏, 2023, 35(5): 120-130.
[5] 付文俊, 张昌民, 冀东升, 娄林, 刘家乐, 王绪龙. 准噶尔盆地南安集海河剖面中侏罗统头屯河组浅水三角洲沉积特征[J]. 岩性油气藏, 2023, 35(4): 145-160.
[6] 余海波. 东濮凹陷构造特征及古生界有利勘探区带评价[J]. 岩性油气藏, 2022, 34(6): 72-79.
[7] 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1): 86-94.
[8] 任婕, 胡忠贵, 胡明毅, 李雄, 庞艳荣, 左洺滔, 黄宇飞. 涪陵地区下三叠统飞仙关组沉积相特征及有利储集体分布[J]. 岩性油气藏, 2021, 33(6): 70-80.
[9] 未志杰, 康晓东. 煤层气藏强化采收全流固耦合模型[J]. 岩性油气藏, 2021, 33(5): 181-188.
[10] 郑荣臣, 李宏涛, 史云清, 肖开华. 川东北元坝地区三叠系须三段沉积特征及成岩作用[J]. 岩性油气藏, 2021, 33(3): 13-26.
[11] 张闻亭, 龙礼文, 肖文华, 魏浩元, 李铁锋, 董震宇. 酒泉盆地青西凹陷窟窿山构造带下沟组沉积特征及储层预测[J]. 岩性油气藏, 2021, 33(1): 186-197.
[12] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[13] 彭军, 褚江天, 陈友莲, 文舰, 李亚丁, 邓思思. 四川盆地高石梯—磨溪地区下寒武统沧浪铺组沉积特征[J]. 岩性油气藏, 2020, 32(4): 12-22.
[14] 庞小军, 王清斌, 解婷, 赵梦, 冯冲. 黄河口凹陷北缘古近系物源及其对优质储层的控制[J]. 岩性油气藏, 2020, 32(2): 1-13.
[15] 郑庆华, 刘乔, 梁秀玲, 张建魁, 张建娜, 刘涛. 鄂尔多斯盆地陇东地区长4+5油层组沉积相展布特征[J]. 岩性油气藏, 2019, 31(6): 26-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .