岩性油气藏 ›› 2020, Vol. 32 ›› Issue (1): 111–119.doi: 10.12108/yxyqc.20200112

• 勘探技术 • 上一篇    下一篇

基于纵横波同步联合的孔隙模量三参数AVO反演方法

丁燕1,2,3, 杜启振1,2, 刘力辉3, 符力耘1,2, 冷雪梅1,2, 刘子煊4   

  1. 1. 中国石油大学(华东)深层油气重点实验室, 山东 青岛 266580;
    2. 青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室, 山东 青岛 266580;
    3. 北京诺克斯达石油科技有限公司, 北京 100083;
    4. 中国石化国际勘探开发有限公司, 北京 100029
  • 收稿日期:2019-06-22 修回日期:2019-08-06 出版日期:2020-01-21 发布日期:2019-11-22
  • 第一作者:丁燕(1985-),女,中国石油大学(华东)在读博士研究生,研究方向为地震资料解释性处理、地球物理AVO反演及储层预测。地址:(266580)山东省青岛市黄岛区长江西路66号。Email:yan_ding@foxmail.com
  • 通信作者: 杜启振(1969-),男,博士,教授,博士生导师,主要从事地震弹性波传播理论与成像方法方面的教学与研究工作。Email:multiwave@163.com。
  • 基金资助:
    中国科学院战略性先导专项(XDA14010303)和高等学校学科创新引智计划(“111计划”)“致密油气地质与勘探创新引智基地、深层—超深层油气地球物理勘探创新引智基地”联合资助

Three-parameter AVO inversion method of pore modulus based on PP and PS wave simultaneous joint inversion

DING Yan1,2,3, DU Qizhen1,2, LIU Lihui3, FU Liyun1,2, LENG Xuemei1,2, LIU Zixuan4   

  1. 1. Key Laboratory of Deep Oil and Gas, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266580, Shandong, China;
    3. Beijing Rock Star Petroleum Technology Co., Ltd., Beijing 100083, China;
    4. Sinopec International Petroleum Exploration and Production Corporation, Beijing 100029, China
  • Received:2019-06-22 Revised:2019-08-06 Online:2020-01-21 Published:2019-11-22

摘要: 等效流体体积模量是一种较为敏感的流体指示因子,在复杂储层的含油气识别中具有重要意义,但仅利用纵波资料AVO反演Gassmann流体因子进行流体识别时存在精度低、多解性强,边界刻画不清晰等问题,制约了其在流体识别中的应用。依据双相介质岩石物理模型,首先推导了新的由等效流体体积模量、岩石骨架剪切模量和孔隙度组成的PP波和PS波Zoeppritz线性近似方程,然后结合PP波和PS波数据,在贝叶斯理论和柯西先验分布约束下进行同步联合反演。Marmousi2油藏模型测试结果表明:与仅利用PP波的反演方法相比,基于独立PP波与PS波的同步联合反演方法更加稳定,反演精度更高,地质体边界特征刻画也更清晰,A油田实例工区应用进一步证明了该方法的可行性与鲁棒性。本文提出的纵横波同步联合反演方法对提高储层流体识别有一定的可借鉴性。

关键词: 同步联合反演, 流体识别, 等效流体体积模量, 剪切模量, 孔隙度

Abstract: Equivalent fluid bulk modulus is a sensitive fluid indicator,which is of great significance in hydrocarbon identification of complex reservoirs. However,conventional single P wave AVO inversion method for fluid identification using Gassmann fluid factor has problems including poor precision,multi-solution,and ambiguous description of geological boundaries,which restricts the applications of these techniques in fluid identification. Based on rock physical model of two-phase medium,a new linear approximation of PP wave and PS wave Zoeppritz equation which consists of equivalent fluid bulk modulus,shear modulus of rock skeleton and porosityrelated gain was derived firstly. Then,simultaneous joint inversion was carried out under the constraint of Bayesian theory and Cauchy prior distribution with the combination of PP wave and PS wave data. The test results of Marmousi2 reservoir model show that compared with the inversion methods merely using PP wave data,simultaneous joint inversion based on independent PP wave and PS wave can provide more stable inversion results, higher accuracy and clearer description of geological boundary characteristics. The application in A oilfield proved the feasibility and robustness of this method. The proposed PP and PS wave simultaneous joint inversion method has certain reference for improving reservoir fluid identification.

Key words: simultaneous joint inversion, fluid identification, equivalent fluid bulk modulus, shear modulus, porosity

中图分类号: 

  • P631.4
[1] GOODWAY B, CHEN T, DOWNTON J. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; "λ ρ","μ ρ",&"λ/μ fluid stack", from P and S inversions. SEG Technical Program Expanded Abstracts, 1997, 16(1):183-186.
[2] RUSSELL B H, HEDLIN K, HILTERMAN F J, et al. Fluidproperty discrimination with AVO:a Biot-Gassmann perspective. Geophysics, 2003, 68(1):29-39.
[3] 李超, 张金淼, 朱振宇. 深部储层流体因子直接反演方法. 石油物探, 2017, 56(6):827-833. LI C, ZHANG J M, ZHU Z Y. Direct inversion for fluid factor of deep reservoirs. Geophysical Prospecting for Petroleum, 2017, 56(6):827-833.
[4] 贾凌云, 李琳, 王千遥, 等. 基于广义弹性阻抗的流体识别因子反演方法研究与应用. 石油物探, 2018, 57(2):302-311. JIA L Y, LI L, WANG Q Y, et al. Fluid identification factor inversion based on generalized elastic impedance. Geophysical Prospecting for Petroleum, 2018, 57(2):302-311.
[5] 印兴耀, 张世鑫, 张繁昌, 等. 利用基于Russell近似的弹性波阻抗反演进行储层描述和流体识别. 石油地球物理勘探, 2010, 45(3):373-380. YIN X Y, ZHANG S X, ZHANG F C, et al. Utilizing Russell approximation-based elastic wave impedance inversion to conduct reservoir description and fluid identification. Oil Geophysical Prospecting, 2010, 45(3):373-380.
[6] 印兴耀, 张世鑫, 张峰. 针对深层流体识别的两项弹性阻抗反演与Russell流体因子直接估算方法研究. 地球物理学报, 2013, 56(7):2378-2390. YIN X Y, ZHANG S X, ZHANG F. Two-term elastic impedance inversion and Russell fluid factor direct estimation method for deep reservoir fluid identification. Chinese Journal of Geophysics, 2013, 56(7):2378-2390.
[7] ZONG Z Y, YIN X Y, WU G C. Elastic impedance variation with angle inversion for elastic parameters. Journal of Geophysics and Engineering, 2012, 9(3):247-260.
[8] 张世鑫. 基于地震信息的流体识别方法研究与应用. 青岛:中国石油大学(华东), 2012. ZHANG S X. Methodology and application of fluid identification with seismic information. Qingdao:China University of Petroleum(East China),2012.
[9] KURT H. Joint inversion of AVA data for elastic parameters by bootstrapping. Computers & Geosciences, 2007, 33(3):367-382.
[10] 张远银, 孙赞东, 金之钧. P-P与P-SV波联合反演方法分类与对比. 石油物探, 2016, 55(4):587-596. ZHANG Y Y, SUN Z D, JIN Z J. Classification and quantitative comparison of P-P and P-SV wave joint inversion methods. Geophysical Prospecting for Petroleum, 2016, 55(4):587-596.
[11] 蔡志东, 李青, 王冲, 等. 利用VSP多波资料预测地层深度及油气属性. 岩性油气藏, 2019, 31(1):109-115. CAI Z D, LI Q, WANG C, et al. Prediction of strata depth and hydrocarbon attributes by using VSP multi-wave data. Lithologic Reservoirs, 2019, 31(1):109-115.
[12] LARSEN J A, MARGRAVE G F, LU H. AVO analysis by simultaneous PP and PS weighted stacking applied to 3 C-3 D seismic data. SEG Expanded Abstracts, 1999:721-723.
[13] 陈天胜, 刘洋, 魏修成. 纵波和转换波联合AVO反演方法研究. 中国石油大学学报(自然科学版), 2006, 30(1):33-37. CHEN T S, LIU Y, WEI X C. Simultaneous P-and S-wave AVO inversion. Journal of China University of Petroleum(Edition of Natural Science), 2006, 30(1):33-37.
[14] DU Q Z, YAN H Z. PP and PS joint AVO inversion and fluid prediction. Journal of Applied Geophysics, 2013, 90(2):110-118.
[15] DOMENICO S N. Elastic properties of unconsolidated porous sand reservoirs. Geophysics, 1977, 42(7):1339-1368.
[16] HAN D, BATZLE M L. Gassmann's equation and fluid-saturation effects on seismic velocities. Geophysics, 2004, 69(2):398-405.
[17] NUR A, MAVKO G, DVORKIN J, et al. Critical porosity:a key to relating physical properties to porosity in rocks. The Leading Edge, 1998, 17(3):357-362.
[18] RUSSELL B H, GRAY D, HAMPSON D P. Linearized AVO and poroelasticity. Geophysics, 2011, 54(6):680-688.
[19] GARDNER G H F, GARDNER L W, GREGORY A R. Formation velocity and density:the diagnostic basis for stratigraphic traps. Geophysics, 1974, 39(6):770-780.
[20] 王秀姣, 黄家强, 姜仁, 等. 不同含气砂岩的AVO响应类型及其近似式误差分析. 岩性油气藏, 2017, 29(5):120-126. WANG X J, HUANG J Q, JIANG R, et al. AVO response of different types of gas-bearing sandstone and error analysis of approximate formulas. Lithologic Reservoirs, 2017, 29(5):120-126.
[21] ZOEPPRITZ K, ERDBEENWELLEN VII B. On the reflection and penetration of seismic waves through unstable layers. Gottinger Nachrichten, 1919, 1:66-84.
[22] 李超, 印兴耀, 张广智, 等. 基于贝叶斯理论的孔隙流体模量叠前AVA反演. 石油物探, 2015, 54(4):467-476. LI C, YIN X Y, ZHANG G Z, et al. Prestack AVA inversion for pore fluid modulus based on the Bayesian theory. Geophysical Prospecting for Petroleum, 2015, 54(4):467-476.
[23] MARTIN G S, WILEY R, MARTFURT K J. Marmousi2:an elastic upgrade for Marmousi. The Leading Edge, 2006, 25(2):156-166.
[24] 郑笑雪, 杜启振, 孟宪军, 等. 横向约束分步叠前弹性参数反演. 石油地球物理勘探, 2017, 52(4):760-769. ZHENG X X, DU Q Z, MENG X J, et al. Lateral constraint two-step prestack elastic parameter inversion. Oil Geophysical Prospecting, 2017, 52(4):760-769.
[1] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[2] 张玉晔, 高建武, 赵靖舟, 张恒, 吴和源, 韩载华, 毛朝瑞, 杨晓. 鄂尔多斯盆地东南部长6油层组致密砂岩成岩作用及其孔隙度定量恢复[J]. 岩性油气藏, 2021, 33(6): 29-38.
[3] 赵军, 韩东, 何胜林, 汤翟, 张涛. 基于水气比计算的低对比度储层流体性质识别[J]. 岩性油气藏, 2021, 33(4): 128-136.
[4] 何绪全, 黄东, 赵艾琳, 李育聪. 川中地区大安寨段页岩油气储层测井评价指标体系[J]. 岩性油气藏, 2021, 33(3): 129-137.
[5] 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188.
[6] 宁从前, 周明顺, 成捷, 苏芮, 郝鹏, 王敏, 潘景丽. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274.
[7] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137.
[8] 王继伟, 朱玉双, 饶欣久, 周树勋, 吴英强, 杨红梅. 鄂尔多斯盆地胡尖山地区长61致密砂岩储层成岩特征与孔隙度定量恢复[J]. 岩性油气藏, 2020, 32(3): 34-43.
[9] 呼延钰莹, 姜福杰, 庞雄奇, 刘铁树, 陈晓智, 李龙龙, 邵新荷, 郑定业. 鄂尔多斯盆地东缘康宁地区二叠系致密储层成岩作用与孔隙度演化[J]. 岩性油气藏, 2019, 31(2): 56-65.
[10] 李小燕, 乔华伟, 张建魁, 马俊杰, 闫江涛, 李树同. 鄂尔多斯盆地姬塬地区长6储层矿物含量与孔隙度的线性关系[J]. 岩性油气藏, 2019, 31(2): 66-74.
[11] 郭秋麟, 武娜, 任洪佳, 陈宁生, 谌卓恒. 中低成熟阶段页岩有机质孔预测模型探讨[J]. 岩性油气藏, 2017, 29(6): 1-7.
[12] 李金磊, 陈祖庆, 王良军, 刘力辉, 李建海. 相控技术在低勘探区生屑滩相储层预测中的应用[J]. 岩性油气藏, 2017, 29(3): 110-117.
[13] 孙文峰, 李玮, 董智煜, 闫铁, 李悦, 李世昌. 页岩孔隙结构表征方法新探索[J]. 岩性油气藏, 2017, 29(2): 125-130.
[14] 郭颖,汤良杰,倪金龙. 碎屑岩地层压实规律及其在古构造恢复中的应用[J]. 岩性油气藏, 2016, 28(4): 43-50.
[15] 汪洋,李树同,牟炜卫,闫灿灿. 姬塬西部地区长81致密储层特征及孔隙度演化分析[J]. 岩性油气藏, 2016, 28(4): 59-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .