岩性油气藏 ›› 2016, Vol. 28 ›› Issue (4): 43–50.doi: 10.3969/j.issn.1673-8926.2016.04.006

• 油气地质 • 上一篇    下一篇

碎屑岩地层压实规律及其在古构造恢复中的应用

郭颖 1,2,汤良杰1,2,倪金龙3   

  1. 1.中国石油大学(北京)盆地与油藏研究中心,北京102249;2.中国石油大学(北京)油气资源与探测国家重点实验室,北京102249;3.山东科技大学山东省沉积成矿作用与沉积矿产重点实验室,山东青岛266590
  • 出版日期:2016-07-20 发布日期:2016-07-20
  • 通讯作者: 汤良杰(1957-),男,博士,教授,主要从事构造地质学的教学和科研工作。E-mail:tanglj@cup.edu.cn。
  • 作者简介:郭颖(1986-),男,中国石油大学(北京)在读博士研究生,研究方向为区域构造及盆地分析。地址:(102249)北京市昌平区府学路18 号中国石油大学(北京)盆地与油藏研究中心。E-mail:guoy9991@163.com
  • 基金资助:

    国家自然科学基金项目“塔里木盆地塔中隆起和塔中北坡走滑构造差异变形机理与油气聚集”(编号:41572105)和山东省自然科学基金项目“济阳坳陷惠民—东营凹陷中央隆起带差异隆升机制研究”(编号:ZR2013DM007)联合资助

Clastic strata compaction law and its application to paleostructure restoration

Guo Ying 1,2,Tang Liangjie 1,2,Ni Jinlong 3   

  1. 1. Basin & Reservoir Research Center,China University of Petroleum,Beijing 102249,China;2. State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum,Beijing 102249,China;3. Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals,Shandong University of Science and Technology,Qingdao 266590,Shandong,China
  • Online:2016-07-20 Published:2016-07-20

摘要:

碎屑岩地层压实作用在不同地质背景和不同盆地演化阶段具有完全不同的规律,一直以来都是油气勘探工作的重点和难点。国内外研究者为推动碎屑岩压实规律定量研究做了大量工作,但其研究成果往往具有地域性和局限性。在国内外相关领域研究成果基础上,从地层压实作用影响因素、压实规律表征方法、正常压实曲线构建方案、利用地层压实规律反演盆地古构造特征和误差定量评价等5 个方面进行了系统调研和探讨。结果表明:碎屑岩地层压实规律研究及其在古构造恢复方面的应用仍处于初级阶段,根据研究区地质特征选取适宜的地层压实规律表征方法和误差评价方法是碎屑岩地层压实规律研究和应用的关键。

关键词: 致密储层, 储层特征, 成因, 山西组, 临兴地区, 鄂尔多斯盆地

Abstract:

The compaction of clastic rock has different paths in different geological settings or at different evolution stages, so it is the emphasis and the difficulty in oil and gas exploration works. In the past decades, domestic and foreign researchers have done a lot of work to promote the quantitative study of the compaction of clastic rocks. However,because of the regionality and limitations about the research results, its applicability receives a serious challenge.Based on the related research results, this paper reviewed the following five aspacts, including the influencing factors of compaction, methods for characterizing the compaction law, normal compaction curve construction scheme,tectonic characteristics restoring and quantitative evaluation of error. The result shows that the research about clastic rock compaction law and its application in palaeostructure restoration is still in the initial stage. It is pointed out that selecting suitable methods for characterizing the formation compaction law and error evaluation, according to the geological characteristics of the study area, is the key for the research and application of clastic strata compaction law.

Key words: tight reservoir, reservoir characteristics, genesis, Shanxi Formation, Linxing area, Ordos Basin

[1] Goldhammer R K. Compaction and decompaction algorithms for sedimentary carbonates[J]. Journal of Sedimentary Research,1997,



67(1):26-35.



[2] Poelchau H S. Modeling an exhumed basin:A method for estimating eroded overburden[J]. Natural Resources Research,2001,10(1):73-84.



[3] Corcoran D V,Doré A G. A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins[J]. Earth Science Reviews,2005,72(3/4):129-168.



[4] 郭颖,倪金龙.利用等效孔隙度法恢复沉积盆地残余地层古厚度——以济阳坳陷惠民凹陷为例[J]. 油气地质与采收率,2012,19(3):42-45.



Guo Ying,Ni Jinlong. Paleo?thickness recovery of residual strata in sedimentary basin by equivalent porosity method—Case of Huimin depression[J]. Petroleum Geology and Recovery Efficiency,2012,19(3):42-45.



[5] 何小胡,刘震,梁全胜,等.沉积地层埋藏过程对泥岩压实作用的影响[J].地学前缘,2010,17(4):167-173.



He Xiaohu,Liu Zhen,Liang Quansheng,et al. The influence of burial history on mudstone compaction[J]. Earth Science Frontiers,2010,17(4):167-173.



[6] Japsen P,Bidstrup T,Lidmar?Bergstrom K. Neogene uplift and erosion of southern Scandinavia induced by the rise of the South Swedish Dome[J]. Special Publications of The Geological Society of London,2002,196:183-208.



[7] Marcussen Ø. Compaction of siliceous sediments?Implications for basin modeling and seismic interpretation[D]. Oslo:University of Oslo Norway,2009:1-54.



[8] Issler D R. A new approach to shale compaction and stratigraphic restoration,Beaufort?Mackenzie Basin and Mackenzie Corridor,Northern Canada[J]. AAPG Bulletin,1992,76(8):1170-1189.



[9] Revil A,Grauls D,Brévart O. Mechanical compaction of sand/clay mixtures[J]. Journal of Geophysical Research,2002,107(B11):1-15.



[10] 黄思静,黄培培,王庆东,等.胶结作用在深埋藏砂岩孔隙保存中的意义[J].岩性油气藏,2007,19(3):7-13.



Huang Sijing,Huang Peipei,Wang Qingdong,et al. The significance of cementation in porosity preservation in deep buried sandstones[J]. Lithologic Revervoirs,2007,19(3):7-13.



[11] Giles M R,Indrelid S L,James D M D. Compaction?the great unknown in basin modelling[J]. Special Publications of the Geological Society of London,1998,141:15-43.



[12] BjØrlykke K. Clay mineral diagenesis in sedimentary basins ?a key to the prediction of rock properties. Examples from the North Sea Basin[J]. Clay minerals,1998,33(1):15-34.



[13] Tassone D R,Holford S P,Duddy I R,et al. Quantifying Cretaceous?Cenozoic exhumation in the Otway Basin,Southeastern Australia,using sonic transit time data:implications for conventional and un?conventional hydrocarbon prospectivity[J]. AAPG Bulletin,2014,98(1):67-117.



[14] 张兆辉,高楚桥,刘娟娟.基于地层组分分析的储层孔隙度计算方法研究[J].岩性油气藏,2012,24(1):97-99.


 


Zhang Zhaohui,Gao Chuqiao,Liu Juanjuan. Calculation method of porosity based on formation component analysis[J]. Lithologic Revervoirs,2012,24(1):97-99.



[15] Hansen S. A compaction trend for Cretaceous and Tertiary shales on the Norwegian shelf based on sonic transit times[J]. Petroleum Geoscience,1996,2:159-166.



[16] Wyllie M R J,Gregory A R,Gardner L W. Elastic wave velocities in heterogeneous and porous media[J]. Geophysics,1956,21(1):41-70.



[17] 王忠楠,柳广弟,陈婉,等.利用声波速度计算南阳凹陷古近纪末地层抬升量[J].岩性油气藏,2014,26(6):69-74.



Wang Zhongnan,Liu Guangdi,Chen Wan,et al. Quantification of late Paleogene uplift in Nanyang Sag using acoustic velocity[J].Lithologic Revervoirs,2014,26(6):69-74.



[18] Nelson P H,Bird K J. Porosity?depth trends and regional uplift calculated from sonic logs,National Petroleum Reserve in Alaska[R].Reston:US Geological Survey,2005:1-28.



[19] Kamel M H,Mabrouk W M,Bayoumi A I. Porosity estimation using a combination of Wyllie?Clemenceau equations in clean sand for?mation from acoustic logs [J]. Journal of Petroleum Science and Engineering,2002,33(4):241-251.



[20] Raiga?Clemenceau J,Martin J P,Nicoletis S. The concept of acoustic formation factor for more accurate porosity determination from sonic transit time data[J]. The Log Analyst,1988,29(1):54-60.



[21] Rowan E L,Hayba D O,Nelson P H,et al. Sandstone and shale compaction curves derived from sonic and gamma ray logs in Off?shore Wells,North Slope,Alaska,Parameters for Basin Modeling[R]. Reston:US Geological Survey,2003.



[22] Athy L F. Density,porosity,and compaction of sedimentary rocks [J]. AAPG Bulletin,1930,14(1):1-24.



[23] Heasler H P,Kharitonova N A. Analysis of sonic well logs applied to erosion estimates in the Bighorn Basin,Wyoming[J]. AAPG Bulletin,1996,80(5):630-646.



[24] 刘景彦,林畅松,喻岳钰,等.用声波测井资料计算剥蚀量的方法改进[J].石油实验地质,2000,22(4):302-306.



Liu Jingyan ,Lin Changsong ,Yu Yueyu,et al. An improved method to calculate denuded amount by sonic well logs[J].Experimental Petroleum Geology,2000,22(4):302-306.



[25] Magara K. Thickness of removed sedimentary rocks,paleopore pressure,and paleotemperature,southwestern part of Western Canada Basin[J]. AAPG Bulletin,1976,60(4):554-565.



[26] Baldwin B,Butler C O. Compaction curves[J]. AAPG Bulletin,1985,69(4):622-626.



[27] Falvey D A,Deighton I. Recent advances in burial and thermal geohistory analysis[J]. The APEA Journal,1982,22:65-81.



[28] Liu G,Roaldset E. A new decompaction model and its application to the northern North Sea[J]. First Break,1994,12(2):81-89.



[29] Japsen P,Mukerji T,Mavko G. Constraints on velocity?depth trends from rock physics models[J]. Geophysical Prospecting,2006,55(2):135-154.



[30] Fuh S. Magnitude of Cenozoic erosion from mean sonic transit time,offshore Taiwan[J]. Marine and Petroleum Geology,2000,17(9):1011-1028.



[31] 杨桥,漆家福.碎屑岩层的分层去压实校正方法[J].石油实验地质,2003,25(2):206-210.



Yang Qiao,Qi Jiafu. Method of delaminated decompaction corre?tion[J]. Petroleum Geology & Experiment,2003,25(2):206-210.



[32] 久凯,丁文龙,李春燕,等.含油气盆地古构造恢复方法研究及进展[J].岩性油气藏,2012,24(1):13-19.



Jiu Kai,Ding Wenlong ,Li Chunyan,et al. Advances of paleostructure restoration methods for petroliferous basin[J]. Lithologic Revervoirs,2012,24(1):13-19.



[33] Corcoran D V,Mecklenburgh R. Exhumation of the Corrib Gas Field,Slyne Basin,offshore Ireland[J]. Petroleum Geoscience,2005,11(3):239-256.



[34] Tassone D R,Holford S P,Stoker M S,et al. Constraining Cenozoic exhumation in the Faroe ?Shetland region using sonic transit time data[J]. Basin Research,2014,26(1):38-72.



[35] 王晓光,旷红伟,伍泽云,等.无孔隙度测井条件下储层孔隙度求取方法探讨[J].岩性油气藏,2008,20(3):99-103.



Wang Xiaoguang,Kuang Hongwei,Wu Zeyun,et al. Methods of calculating porosity without logging porosity data[J]. Lithologic Revervoirs,2008,20(3):99-103.



[36] 何将启,王宜芳.计算剥蚀厚度的优化孔隙度法:程序及应用[J].高校地质学报,2002,8(2):207-214.



He Jiangqi,Wang Yifang. Optimum estimation of the thickness of erosion by porosity data:Program and a case[J]. Geological Jour?nal of China Universities,2002,8(2):207-214.



[37] 韩用兵,王良书,刘绍文.渤海湾盆地济阳坳陷沙四段和孔店组地层剥蚀厚度恢复[J].高校地质学报,2004,10(3):440-450.



Han Yongbing,Wang Liangshu,Liu Shaowen. The estimation of the erosion thickness of Es4 and Ek in Jiayang Depression,Bohai Bay Basin[J]. Geological Journal of China Universities,2004,10(3):440-450.



[38] 尚可耘,贾健谊,周祖翼,等.利用声波测井数据估算西湖凹陷地层剥蚀量[J].海洋石油,2001(3):12-15.



Shang Keyun,Jia Jianyi,Zhou Zuyi,et al. Quantitative estimation of erosion for Xihu Depression: sonic velocity analysis [J]. Offshore Oil,2001(3):12-15.

[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[3] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[4] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[5] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[6] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[7] 李慧莉, 尤东华, 李建交, 谭广辉, 刘士林. 麦盖提斜坡北新1井吐依洛克组角砾岩储层特征[J]. 岩性油气藏, 2021, 33(2): 26-35.
[8] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[9] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[10] 李祖兵, 崔俊峰, 宋舜尧, 成亚斌, 卢异, 陈岑. 黄骅坳陷北大港潜山中生界碎屑岩储层特征及成因机理[J]. 岩性油气藏, 2021, 33(2): 81-92.
[11] 覃阳亮, 何幼斌, 蔡俊, 李华, 张灿, 刘建宁. 东非海岸Davie构造带的构造演化特征及其成因机制[J]. 岩性油气藏, 2021, 33(2): 104-115.
[12] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
[13] 周新平, 邓秀芹, 李士祥, 左静, 张文选, 李涛涛, 廖永乐. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120.
[14] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[15] 曹江骏, 陈朝兵, 罗静兰, 王茜. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏, 2020, 32(6): 36-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .