岩性油气藏 ›› 2016, Vol. 28 ›› Issue (4): 43–50.doi: 10.3969/j.issn.1673-8926.2016.04.006

• 油气地质 • 上一篇    下一篇

碎屑岩地层压实规律及其在古构造恢复中的应用

郭颖 1,2,汤良杰1,2,倪金龙3   

  1. 1.中国石油大学(北京)盆地与油藏研究中心,北京102249;2.中国石油大学(北京)油气资源与探测国家重点实验室,北京102249;3.山东科技大学山东省沉积成矿作用与沉积矿产重点实验室,山东青岛266590
  • 出版日期:2016-07-20 发布日期:2016-07-20
  • 第一作者:郭颖(1986-),男,中国石油大学(北京)在读博士研究生,研究方向为区域构造及盆地分析。地址:(102249)北京市昌平区府学路18 号中国石油大学(北京)盆地与油藏研究中心。E-mail:guoy9991@163.com
  • 通信作者: 汤良杰(1957-),男,博士,教授,主要从事构造地质学的教学和科研工作。E-mail:tanglj@cup.edu.cn。
  • 基金资助:

    国家自然科学基金项目“塔里木盆地塔中隆起和塔中北坡走滑构造差异变形机理与油气聚集”(编号:41572105)和山东省自然科学基金项目“济阳坳陷惠民—东营凹陷中央隆起带差异隆升机制研究”(编号:ZR2013DM007)联合资助

Clastic strata compaction law and its application to paleostructure restoration

Guo Ying 1,2,Tang Liangjie 1,2,Ni Jinlong 3   

  1. 1. Basin & Reservoir Research Center,China University of Petroleum,Beijing 102249,China;2. State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum,Beijing 102249,China;3. Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals,Shandong University of Science and Technology,Qingdao 266590,Shandong,China
  • Online:2016-07-20 Published:2016-07-20

摘要:

碎屑岩地层压实作用在不同地质背景和不同盆地演化阶段具有完全不同的规律,一直以来都是油气勘探工作的重点和难点。国内外研究者为推动碎屑岩压实规律定量研究做了大量工作,但其研究成果往往具有地域性和局限性。在国内外相关领域研究成果基础上,从地层压实作用影响因素、压实规律表征方法、正常压实曲线构建方案、利用地层压实规律反演盆地古构造特征和误差定量评价等5 个方面进行了系统调研和探讨。结果表明:碎屑岩地层压实规律研究及其在古构造恢复方面的应用仍处于初级阶段,根据研究区地质特征选取适宜的地层压实规律表征方法和误差评价方法是碎屑岩地层压实规律研究和应用的关键。

关键词: 致密储层, 储层特征, 成因, 山西组, 临兴地区, 鄂尔多斯盆地

Abstract:

The compaction of clastic rock has different paths in different geological settings or at different evolution stages, so it is the emphasis and the difficulty in oil and gas exploration works. In the past decades, domestic and foreign researchers have done a lot of work to promote the quantitative study of the compaction of clastic rocks. However,because of the regionality and limitations about the research results, its applicability receives a serious challenge.Based on the related research results, this paper reviewed the following five aspacts, including the influencing factors of compaction, methods for characterizing the compaction law, normal compaction curve construction scheme,tectonic characteristics restoring and quantitative evaluation of error. The result shows that the research about clastic rock compaction law and its application in palaeostructure restoration is still in the initial stage. It is pointed out that selecting suitable methods for characterizing the formation compaction law and error evaluation, according to the geological characteristics of the study area, is the key for the research and application of clastic strata compaction law.

Key words: tight reservoir, reservoir characteristics, genesis, Shanxi Formation, Linxing area, Ordos Basin

[1] Goldhammer R K. Compaction and decompaction algorithms for sedimentary carbonates[J]. Journal of Sedimentary Research,1997,



67(1):26-35.



[2] Poelchau H S. Modeling an exhumed basin:A method for estimating eroded overburden[J]. Natural Resources Research,2001,10(1):73-84.



[3] Corcoran D V,Doré A G. A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins[J]. Earth Science Reviews,2005,72(3/4):129-168.



[4] 郭颖,倪金龙.利用等效孔隙度法恢复沉积盆地残余地层古厚度——以济阳坳陷惠民凹陷为例[J]. 油气地质与采收率,2012,19(3):42-45.



Guo Ying,Ni Jinlong. Paleo?thickness recovery of residual strata in sedimentary basin by equivalent porosity method—Case of Huimin depression[J]. Petroleum Geology and Recovery Efficiency,2012,19(3):42-45.



[5] 何小胡,刘震,梁全胜,等.沉积地层埋藏过程对泥岩压实作用的影响[J].地学前缘,2010,17(4):167-173.



He Xiaohu,Liu Zhen,Liang Quansheng,et al. The influence of burial history on mudstone compaction[J]. Earth Science Frontiers,2010,17(4):167-173.



[6] Japsen P,Bidstrup T,Lidmar?Bergstrom K. Neogene uplift and erosion of southern Scandinavia induced by the rise of the South Swedish Dome[J]. Special Publications of The Geological Society of London,2002,196:183-208.



[7] Marcussen Ø. Compaction of siliceous sediments?Implications for basin modeling and seismic interpretation[D]. Oslo:University of Oslo Norway,2009:1-54.



[8] Issler D R. A new approach to shale compaction and stratigraphic restoration,Beaufort?Mackenzie Basin and Mackenzie Corridor,Northern Canada[J]. AAPG Bulletin,1992,76(8):1170-1189.



[9] Revil A,Grauls D,Brévart O. Mechanical compaction of sand/clay mixtures[J]. Journal of Geophysical Research,2002,107(B11):1-15.



[10] 黄思静,黄培培,王庆东,等.胶结作用在深埋藏砂岩孔隙保存中的意义[J].岩性油气藏,2007,19(3):7-13.



Huang Sijing,Huang Peipei,Wang Qingdong,et al. The significance of cementation in porosity preservation in deep buried sandstones[J]. Lithologic Revervoirs,2007,19(3):7-13.



[11] Giles M R,Indrelid S L,James D M D. Compaction?the great unknown in basin modelling[J]. Special Publications of the Geological Society of London,1998,141:15-43.



[12] BjØrlykke K. Clay mineral diagenesis in sedimentary basins ?a key to the prediction of rock properties. Examples from the North Sea Basin[J]. Clay minerals,1998,33(1):15-34.



[13] Tassone D R,Holford S P,Duddy I R,et al. Quantifying Cretaceous?Cenozoic exhumation in the Otway Basin,Southeastern Australia,using sonic transit time data:implications for conventional and un?conventional hydrocarbon prospectivity[J]. AAPG Bulletin,2014,98(1):67-117.



[14] 张兆辉,高楚桥,刘娟娟.基于地层组分分析的储层孔隙度计算方法研究[J].岩性油气藏,2012,24(1):97-99.


 


Zhang Zhaohui,Gao Chuqiao,Liu Juanjuan. Calculation method of porosity based on formation component analysis[J]. Lithologic Revervoirs,2012,24(1):97-99.



[15] Hansen S. A compaction trend for Cretaceous and Tertiary shales on the Norwegian shelf based on sonic transit times[J]. Petroleum Geoscience,1996,2:159-166.



[16] Wyllie M R J,Gregory A R,Gardner L W. Elastic wave velocities in heterogeneous and porous media[J]. Geophysics,1956,21(1):41-70.



[17] 王忠楠,柳广弟,陈婉,等.利用声波速度计算南阳凹陷古近纪末地层抬升量[J].岩性油气藏,2014,26(6):69-74.



Wang Zhongnan,Liu Guangdi,Chen Wan,et al. Quantification of late Paleogene uplift in Nanyang Sag using acoustic velocity[J].Lithologic Revervoirs,2014,26(6):69-74.



[18] Nelson P H,Bird K J. Porosity?depth trends and regional uplift calculated from sonic logs,National Petroleum Reserve in Alaska[R].Reston:US Geological Survey,2005:1-28.



[19] Kamel M H,Mabrouk W M,Bayoumi A I. Porosity estimation using a combination of Wyllie?Clemenceau equations in clean sand for?mation from acoustic logs [J]. Journal of Petroleum Science and Engineering,2002,33(4):241-251.



[20] Raiga?Clemenceau J,Martin J P,Nicoletis S. The concept of acoustic formation factor for more accurate porosity determination from sonic transit time data[J]. The Log Analyst,1988,29(1):54-60.



[21] Rowan E L,Hayba D O,Nelson P H,et al. Sandstone and shale compaction curves derived from sonic and gamma ray logs in Off?shore Wells,North Slope,Alaska,Parameters for Basin Modeling[R]. Reston:US Geological Survey,2003.



[22] Athy L F. Density,porosity,and compaction of sedimentary rocks [J]. AAPG Bulletin,1930,14(1):1-24.



[23] Heasler H P,Kharitonova N A. Analysis of sonic well logs applied to erosion estimates in the Bighorn Basin,Wyoming[J]. AAPG Bulletin,1996,80(5):630-646.



[24] 刘景彦,林畅松,喻岳钰,等.用声波测井资料计算剥蚀量的方法改进[J].石油实验地质,2000,22(4):302-306.



Liu Jingyan ,Lin Changsong ,Yu Yueyu,et al. An improved method to calculate denuded amount by sonic well logs[J].Experimental Petroleum Geology,2000,22(4):302-306.



[25] Magara K. Thickness of removed sedimentary rocks,paleopore pressure,and paleotemperature,southwestern part of Western Canada Basin[J]. AAPG Bulletin,1976,60(4):554-565.



[26] Baldwin B,Butler C O. Compaction curves[J]. AAPG Bulletin,1985,69(4):622-626.



[27] Falvey D A,Deighton I. Recent advances in burial and thermal geohistory analysis[J]. The APEA Journal,1982,22:65-81.



[28] Liu G,Roaldset E. A new decompaction model and its application to the northern North Sea[J]. First Break,1994,12(2):81-89.



[29] Japsen P,Mukerji T,Mavko G. Constraints on velocity?depth trends from rock physics models[J]. Geophysical Prospecting,2006,55(2):135-154.



[30] Fuh S. Magnitude of Cenozoic erosion from mean sonic transit time,offshore Taiwan[J]. Marine and Petroleum Geology,2000,17(9):1011-1028.



[31] 杨桥,漆家福.碎屑岩层的分层去压实校正方法[J].石油实验地质,2003,25(2):206-210.



Yang Qiao,Qi Jiafu. Method of delaminated decompaction corre?tion[J]. Petroleum Geology & Experiment,2003,25(2):206-210.



[32] 久凯,丁文龙,李春燕,等.含油气盆地古构造恢复方法研究及进展[J].岩性油气藏,2012,24(1):13-19.



Jiu Kai,Ding Wenlong ,Li Chunyan,et al. Advances of paleostructure restoration methods for petroliferous basin[J]. Lithologic Revervoirs,2012,24(1):13-19.



[33] Corcoran D V,Mecklenburgh R. Exhumation of the Corrib Gas Field,Slyne Basin,offshore Ireland[J]. Petroleum Geoscience,2005,11(3):239-256.



[34] Tassone D R,Holford S P,Stoker M S,et al. Constraining Cenozoic exhumation in the Faroe ?Shetland region using sonic transit time data[J]. Basin Research,2014,26(1):38-72.



[35] 王晓光,旷红伟,伍泽云,等.无孔隙度测井条件下储层孔隙度求取方法探讨[J].岩性油气藏,2008,20(3):99-103.



Wang Xiaoguang,Kuang Hongwei,Wu Zeyun,et al. Methods of calculating porosity without logging porosity data[J]. Lithologic Revervoirs,2008,20(3):99-103.



[36] 何将启,王宜芳.计算剥蚀厚度的优化孔隙度法:程序及应用[J].高校地质学报,2002,8(2):207-214.



He Jiangqi,Wang Yifang. Optimum estimation of the thickness of erosion by porosity data:Program and a case[J]. Geological Jour?nal of China Universities,2002,8(2):207-214.



[37] 韩用兵,王良书,刘绍文.渤海湾盆地济阳坳陷沙四段和孔店组地层剥蚀厚度恢复[J].高校地质学报,2004,10(3):440-450.



Han Yongbing,Wang Liangshu,Liu Shaowen. The estimation of the erosion thickness of Es4 and Ek in Jiayang Depression,Bohai Bay Basin[J]. Geological Journal of China Universities,2004,10(3):440-450.



[38] 尚可耘,贾健谊,周祖翼,等.利用声波测井数据估算西湖凹陷地层剥蚀量[J].海洋石油,2001(3):12-15.



Shang Keyun,Jia Jianyi,Zhou Zuyi,et al. Quantitative estimation of erosion for Xihu Depression: sonic velocity analysis [J]. Offshore Oil,2001(3):12-15.

[1] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[2] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[3] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[4] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[5] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[6] 田亚, 李军辉, 陈方举, 李跃, 刘华晔, 邹越, 张晓扬. 海拉尔盆地中部断陷带下白垩统南屯组致密储层特征及有利区预测[J]. 岩性油气藏, 2024, 36(4): 136-146.
[7] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[8] 秦正山, 何勇明, 丁洋洋, 李柏宏, 孙双双. 边水气藏水侵动态分析方法及水侵主控因素[J]. 岩性油气藏, 2024, 36(4): 178-188.
[9] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[10] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[11] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[12] 窦立荣, 刘化清, 李博, 齐雯, 孙东, 尹路, 韩双彪. 全球天然氢气勘探开发利用进展及中国的勘探前景[J]. 岩性油气藏, 2024, 36(2): 1-14.
[13] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[14] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
[15] 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区中—晚二叠世构造-沉积环境与原型盆地演化[J]. 岩性油气藏, 2024, 36(1): 32-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .