岩性油气藏 ›› 2021, Vol. 33 ›› Issue (4): 166175.doi: 10.12108/yxyqc.20210418
孔垂显1, 巴忠臣1, 崔志松1, 华美瑞1, 刘月田2, 马晶2
KONG Chuixian1, BA Zhongchen1, CUI Zhisong1, HUA Meirui1, LIU Yuetian2, MA Jing2
摘要: 火山岩油藏属于双重介质油藏,油藏内部天然裂缝发育,由于储层具有应力敏感性,火山岩油藏产量受地层压力变化影响明显,且储层流体流动具有启动压力梯度现象,故目前没有适合火山岩油藏特性的产能模型。基于双重介质模型,分区(基质-裂缝区、缝网改造区、部分缝网改造区、人工裂缝区)建立了火山岩油藏压裂水平井渗流模型,通过Laplace变换、Duhamel原理和叠加原理得到了拉氏空间压裂水平井复合流动模型,利用stehfest数值反演得到了相应的压力动态响应曲线和无量纲产量曲线,并对影响产能的部分因素进行了敏感性分析。结果表明:压裂改造区的宽度和长度等主要影响中间流动阶段,未压裂改造区的宽度、长度、非达西流动和应力敏感性主要影响后期流动阶段。利用建立的复合流动模型准确地预测了无底水火山岩油藏产能,此项研究对于火山岩油藏产能计算具有一定的指导意义。
中图分类号:
[1] 伍友佳, 戴勇, 雷家华, 等.新疆火山岩油藏开发研究.北京:石油工业出版社, 2013. WU Y J, DAI Y, LEI J H, et al. Xinjiang volcanic reservoir development research. Beijing:Petroleum Industry Press, 2013. [2] 邹才能, 赵文智, 贾承造, 等.中国沉积盆地火山岩油气藏形成与分布.石油勘探与开发, 2008, 35(3):257-271. ZOU C L, ZHAO W Z, JIA C Z, et al. Formation and distribution of volcanic oil and gas reservoirs in Chinese sedimentary basins. Petroleum Exploration and Development, 2008, 35(3):257-271. [3] LARSEN L, HEGRE T M. Pressure-transient behavior of horizontal wells with finite conductivity vertical fractures. SPE 22076, 1991. [4] GUO G, EVANS R D. A systematic methodology for produc-tion modeling of naturally fractured reservoirs intersected by horizontal wells. International Conference on Recent Advances in Horizontal Well Applications, Calgary, 1994. [5] 郎兆新, 张丽华, 程林松.压裂水平井产能研究.石油大学学报(自然科学版), 1994, 18(2):43-46. LANG Z X, ZHANG L H, CHENG L S. Study on productivity of fracturing horizontal wells. Journal of University of Petroleum, China(Natural Science Edition), 1994, 18(2):43-46. [6] 程林松, 李春兰, 郎兆新, 等.分支水平井产能的研究.石油学报, 1995, 16(2):49-55. CHENG L S, LI C L, LANG Z X, et al. Research on productivity of branch horizontal wells. Acta Petrolei Sinica, 1995, 16(2):49-55. [7] HORNE R N, TEMENG K O. Relative productivities and pressure transient modeling of horizontal wells with multiple fractures. SPE 29891, 1995. [8] 范子菲, 方宏长, 牛新年.裂缝性油藏水平井稳态解产能公式研究.石油勘探与开发, 1996, 23(3):52-57. FANG Z F, FANG H C, NIU X N. Study on productivity formula of horizontal wells in fractured reservoirs. Petroleum Exploration and Development, 1996, 23(3):52-57. [9] 宁正福, 韩树刚, 程林松, 等.低渗透油气藏压裂水平井产能计算方法.石油学报, 2002, 23(2):68-71. NING Z F, HAN S G, CHENG L S, et al. Productivity calculation method of fracturing horizontal wells in low permeability oil and gas reservoirs. Acta Petrolei Sinica, 2002, 23(2):68-71. [10] ZERZAR D, TIAB Y B. Interpretation of multiple hydraulically fractured horizontal wells. SPE 88707, 2004. [11] 郭肖, 伍勇.启动压力梯度和应力敏感效应对低渗透气藏水平井产能的影响.石油与天然气地质, 2007, 28(4):539-543. GUO X, WU Y. Influence of start-up pressure gradient and stress sensitivity effect on horizontal well productivity in low permeability gas reservoirs. Oil and Gas Geology, 2007, 28(4):539-543. [12] VALKO P P, AMINI S. The method of distributed volumetric sources for calculating the transient and pseudo steady state productivity of complex well fracture configurations. SPE 106279, 2007. [13] BELLO R O, WATTENBARGER R A. Multi-stage hydraulically fractured horizontal shale gas well rate transient analysis. SPE 126754, 2010. [14] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs. SPE Journal, 1963, 3(3):245-255. [15] BROWN M, OZKAN E, RAGHAVAN R, KAZEMI H. Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs. SPE 125043, 2011. [16] 姚军, 殷修杏, 樊冬艳, 等.低渗透油藏的压裂水平井三线性流试井模型.油气井测试, 2011, 20(5):1-5. YAO J, YIN X X, FAN D Y, et al. Trilinear flow test model for fracturing horizontal wells in low permeability reservoirs. Oil and Gas Well Testing, 2011, 20(5):1-5. [17] 苏玉亮, 王文东, 盛广龙.体积压裂水平井复合流动模型.石油学报, 2014, 35(3):504-510. SU Y L, WANG W D, SHENG G L. Compound flow model of volumetric fracturing horizontal well. Acta Petrolei Sinica, 2014, 35(3):504-510. [18] 潘有军, 荆文波, 徐赢,等.火山岩油藏水平井体积压裂产能预测研究.岩性油气藏, 2018, 30(3):159-164. PAN Y J, JING W B, XU Y, et al. Productivity prediction of horizontal wells by volume fracturing in volcanic reservoirs. Lithologic Reservoirs, 2018, 30(3):159-164. [19] 苏皓, 雷征东, 张荻萩, 等.致密油藏体积压裂水平井参数优化研究.岩性油气藏, 2018, 30(4):140-148. SU H, LEI Z D, ZHANG D Q, et al. Volume fracturing parameters optimization of horizontal well in tight reservoir. Lithologic Reservoirs, 2018, 30(4):140-148. [20] 宋宣毅, 刘月田, 马晶, 等.基于灰狼算法优化的支持向量机产能预测.岩性油气藏, 2020, 32(2):134-140. SONG X Y, LIU Y T, MA J, et al. Productivity forecast based on support vector machine optimized by grey wolf optimizer. Lithologic Reservoirs, 2020, 32(2):134-140. [21] KIKANI J, PEDROSA JR O A. Perturbation analysis of stresssensitive reservoirs. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(3):A160. |
[1] | 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105. |
[2] | 杜长鹏. 松辽盆地莺山-双城断陷白垩系致密火山岩天然气成藏条件及主控因素[J]. 岩性油气藏, 2023, 35(4): 115-124. |
[3] | 武小宁, 邓勇, 林煜, 钟厚财, 康晓宁, 汪钰婷, 屈琳. 准噶尔盆地阜东斜坡石炭系有利岩相预测及勘探方向[J]. 岩性油气藏, 2023, 35(4): 125-136. |
[4] | 江梦雅, 王江涛, 刘龙松, 李卉, 陈海龙, 蒋中发, 王学勇, 刘海磊. 准噶尔盆地盆1井西凹陷石炭系—二叠系天然气特征及成藏主控因素[J]. 岩性油气藏, 2023, 35(3): 138-151. |
[5] | 石文武, 雍运动, 吴开龙, 田彦灿, 王鹏. 渤海湾盆地老爷庙地区火山岩速度建模与成像[J]. 岩性油气藏, 2021, 33(4): 101-110. |
[6] | 李树博, 郭旭光, 郑孟林, 王泽胜, 刘新龙. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1): 258-266. |
[7] | 郑庆华, 尤继元. 黄骅坳陷王官屯构造带白垩系火山岩油气成藏特征[J]. 岩性油气藏, 2019, 31(5): 44-51. |
[8] | 潘有军, 荆文波, 徐赢, 赵嗣君, 李继成, 陶登海. 火山岩油藏水平井体积压裂产能预测研究[J]. 岩性油气藏, 2018, 30(3): 159-164. |
[9] | 靳军, 王剑, 杨召, 刘金, 季汉成, 贾海波, 张晓刚. 准噶尔盆地克-百断裂带石炭系内幕储层测井岩性识别[J]. 岩性油气藏, 2018, 30(2): 85-92. |
[10] | 蔡冬梅, 叶涛, 鲁凤婷, 高坤顺, 任云鹏. 渤海海域中生界火山岩岩相特征及其识别方法[J]. 岩性油气藏, 2018, 30(1): 112-120. |
[11] | 孔垂显, 邱子刚, 卢志远, 贾俊飞, 常天全. 准噶尔盆地东部石炭系火山岩岩体划分[J]. 岩性油气藏, 2017, 29(6): 15-22. |
[12] | 何贤英, 刘勇, 许学龙, 刘邦兴, 张顺存. 西泉地区石炭系火山岩储层主控因素及有利储层预测[J]. 岩性油气藏, 2017, 29(3): 42-51. |
[13] | 刘小洪,冯明友,郗爱华,鄢晓荣,吴 宇,刘 畅 . 克拉美丽气田滴西地区石炭系火山岩储层成岩作用及孔隙演化[J]. 岩性油气藏, 2016, 28(1): 38-48. |
[14] | 张大权,邹妞妞,姜 杨,马崇尧,张顺存,杜社宽 . 火山岩岩性测井识别方法研究——以准噶尔盆地火山岩为例[J]. 岩性油气藏, 2015, 27(1): 108-114. |
[15] | 李 欣,杜德道,蔡郁文,王 珊 . 松辽盆地徐家围子地区火山岩储层主要次生矿物研究[J]. 岩性油气藏, 2014, 26(6): 98-105. |
|