岩性油气藏 ›› 2021, Vol. 33 ›› Issue (4): 166–175.doi: 10.12108/yxyqc.20210418

• 石油工程 • 上一篇    下一篇

火山岩油藏压裂水平井应力敏感产能模型

孔垂显1, 巴忠臣1, 崔志松1, 华美瑞1, 刘月田2, 马晶2   

  1. 1. 中国石油新疆油田分公司 勘探开发研究院, 新疆克拉玛依 834000;
    2. 中国石油大学 (北京)油气资源与探测国家重点实验室, 北京 102249
  • 收稿日期:2020-08-25 修回日期:2020-10-18 出版日期:2021-08-01 发布日期:2021-08-06
  • 第一作者:孔垂显(1975-),男,高级工程师,主要从事油田开发方面的研究工作。地址:(834000)新疆克拉玛依市准噶尔路32号中国石油新疆油田分公司勘探开发研究院。Email:kchuixian@petrochina.com.cn
  • 通信作者: 刘月田(1965-),男,博士,教授、博士生导师,主要从事裂缝性油藏开发理论、方法与技术方面的研究工作。Email:lyt51@163.com。
  • 基金资助:
    中国石油重大科研专项“新疆和吐哈油田勘探开发关键技术研究与应用”课题5“火山岩油藏效益开发关键技术研究与应用”(编号:2017E-0405)资助

Stress-sensitive productivity model of fractured horizontal wells in volcanic reservoirs

KONG Chuixian1, BA Zhongchen1, CUI Zhisong1, HUA Meirui1, LIU Yuetian2, MA Jing2   

  1. 1. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China
  • Received:2020-08-25 Revised:2020-10-18 Online:2021-08-01 Published:2021-08-06

摘要: 火山岩油藏属于双重介质油藏,油藏内部天然裂缝发育,由于储层具有应力敏感性,火山岩油藏产量受地层压力变化影响明显,且储层流体流动具有启动压力梯度现象,故目前没有适合火山岩油藏特性的产能模型。基于双重介质模型,分区(基质-裂缝区、缝网改造区、部分缝网改造区、人工裂缝区)建立了火山岩油藏压裂水平井渗流模型,通过Laplace变换、Duhamel原理和叠加原理得到了拉氏空间压裂水平井复合流动模型,利用stehfest数值反演得到了相应的压力动态响应曲线和无量纲产量曲线,并对影响产能的部分因素进行了敏感性分析。结果表明:压裂改造区的宽度和长度等主要影响中间流动阶段,未压裂改造区的宽度、长度、非达西流动和应力敏感性主要影响后期流动阶段。利用建立的复合流动模型准确地预测了无底水火山岩油藏产能,此项研究对于火山岩油藏产能计算具有一定的指导意义。

关键词: 火山岩, 复合流动模型, 产能计算, 敏感性分析

Abstract: Natural fractures are developed in the volcanic reservoirs which are dual medium. Due to the stress sensitivity of the reservoirs,the production of volcanic reservoirs is significantly affected by changes in formation pressure,and there is a threshold gradient pressure phenomenon,so there is currently no productivity model suitable for the characteristics of volcanic reservoirs. Based on the dual media model,a coupling multi-scale(matrixfracture zone,fracture network reform zone,partial fracture network reform zone,artificial fracture zone)seepage model of fractured horizontal wells in volcanic reservoir was established,which was solved by Laplace transformation,Duhamel principle and superposition principle in Lagrangian space. The corresponding pressure dynamic response curve and dimensionless production curve were obtained by Stehfest numerical inversion,and the sensitivity analysis of different influencing factors was performed. The results show that the width and length of the fractured zone mainly affect the intermediate flow stage,while the width,length,non-Darcy flow and stress sensitivity of the unfractured zone mainly affect the later flow stage. The established compound flow model can accurately predict the productivity of bottomless volcanic reservoirs. There is certain guiding significance for the calculation of productivity of volcanic reservoirs.

Key words: volcanic rock, compound flow model, production calculation, sensitivity analysis

中图分类号: 

  • TE349
[1] 伍友佳, 戴勇, 雷家华, 等.新疆火山岩油藏开发研究.北京:石油工业出版社, 2013. WU Y J, DAI Y, LEI J H, et al. Xinjiang volcanic reservoir development research. Beijing:Petroleum Industry Press, 2013.
[2] 邹才能, 赵文智, 贾承造, 等.中国沉积盆地火山岩油气藏形成与分布.石油勘探与开发, 2008, 35(3):257-271. ZOU C L, ZHAO W Z, JIA C Z, et al. Formation and distribution of volcanic oil and gas reservoirs in Chinese sedimentary basins. Petroleum Exploration and Development, 2008, 35(3):257-271.
[3] LARSEN L, HEGRE T M. Pressure-transient behavior of horizontal wells with finite conductivity vertical fractures. SPE 22076, 1991.
[4] GUO G, EVANS R D. A systematic methodology for produc-tion modeling of naturally fractured reservoirs intersected by horizontal wells. International Conference on Recent Advances in Horizontal Well Applications, Calgary, 1994.
[5] 郎兆新, 张丽华, 程林松.压裂水平井产能研究.石油大学学报(自然科学版), 1994, 18(2):43-46. LANG Z X, ZHANG L H, CHENG L S. Study on productivity of fracturing horizontal wells. Journal of University of Petroleum, China(Natural Science Edition), 1994, 18(2):43-46.
[6] 程林松, 李春兰, 郎兆新, 等.分支水平井产能的研究.石油学报, 1995, 16(2):49-55. CHENG L S, LI C L, LANG Z X, et al. Research on productivity of branch horizontal wells. Acta Petrolei Sinica, 1995, 16(2):49-55.
[7] HORNE R N, TEMENG K O. Relative productivities and pressure transient modeling of horizontal wells with multiple fractures. SPE 29891, 1995.
[8] 范子菲, 方宏长, 牛新年.裂缝性油藏水平井稳态解产能公式研究.石油勘探与开发, 1996, 23(3):52-57. FANG Z F, FANG H C, NIU X N. Study on productivity formula of horizontal wells in fractured reservoirs. Petroleum Exploration and Development, 1996, 23(3):52-57.
[9] 宁正福, 韩树刚, 程林松, 等.低渗透油气藏压裂水平井产能计算方法.石油学报, 2002, 23(2):68-71. NING Z F, HAN S G, CHENG L S, et al. Productivity calculation method of fracturing horizontal wells in low permeability oil and gas reservoirs. Acta Petrolei Sinica, 2002, 23(2):68-71.
[10] ZERZAR D, TIAB Y B. Interpretation of multiple hydraulically fractured horizontal wells. SPE 88707, 2004.
[11] 郭肖, 伍勇.启动压力梯度和应力敏感效应对低渗透气藏水平井产能的影响.石油与天然气地质, 2007, 28(4):539-543. GUO X, WU Y. Influence of start-up pressure gradient and stress sensitivity effect on horizontal well productivity in low permeability gas reservoirs. Oil and Gas Geology, 2007, 28(4):539-543.
[12] VALKO P P, AMINI S. The method of distributed volumetric sources for calculating the transient and pseudo steady state productivity of complex well fracture configurations. SPE 106279, 2007.
[13] BELLO R O, WATTENBARGER R A. Multi-stage hydraulically fractured horizontal shale gas well rate transient analysis. SPE 126754, 2010.
[14] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs. SPE Journal, 1963, 3(3):245-255.
[15] BROWN M, OZKAN E, RAGHAVAN R, KAZEMI H. Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs. SPE 125043, 2011.
[16] 姚军, 殷修杏, 樊冬艳, 等.低渗透油藏的压裂水平井三线性流试井模型.油气井测试, 2011, 20(5):1-5. YAO J, YIN X X, FAN D Y, et al. Trilinear flow test model for fracturing horizontal wells in low permeability reservoirs. Oil and Gas Well Testing, 2011, 20(5):1-5.
[17] 苏玉亮, 王文东, 盛广龙.体积压裂水平井复合流动模型.石油学报, 2014, 35(3):504-510. SU Y L, WANG W D, SHENG G L. Compound flow model of volumetric fracturing horizontal well. Acta Petrolei Sinica, 2014, 35(3):504-510.
[18] 潘有军, 荆文波, 徐赢,等.火山岩油藏水平井体积压裂产能预测研究.岩性油气藏, 2018, 30(3):159-164. PAN Y J, JING W B, XU Y, et al. Productivity prediction of horizontal wells by volume fracturing in volcanic reservoirs. Lithologic Reservoirs, 2018, 30(3):159-164.
[19] 苏皓, 雷征东, 张荻萩, 等.致密油藏体积压裂水平井参数优化研究.岩性油气藏, 2018, 30(4):140-148. SU H, LEI Z D, ZHANG D Q, et al. Volume fracturing parameters optimization of horizontal well in tight reservoir. Lithologic Reservoirs, 2018, 30(4):140-148.
[20] 宋宣毅, 刘月田, 马晶, 等.基于灰狼算法优化的支持向量机产能预测.岩性油气藏, 2020, 32(2):134-140. SONG X Y, LIU Y T, MA J, et al. Productivity forecast based on support vector machine optimized by grey wolf optimizer. Lithologic Reservoirs, 2020, 32(2):134-140.
[21] KIKANI J, PEDROSA JR O A. Perturbation analysis of stresssensitive reservoirs. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(3):A160.
[1] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[2] 杜长鹏. 松辽盆地莺山-双城断陷白垩系致密火山岩天然气成藏条件及主控因素[J]. 岩性油气藏, 2023, 35(4): 115-124.
[3] 武小宁, 邓勇, 林煜, 钟厚财, 康晓宁, 汪钰婷, 屈琳. 准噶尔盆地阜东斜坡石炭系有利岩相预测及勘探方向[J]. 岩性油气藏, 2023, 35(4): 125-136.
[4] 江梦雅, 王江涛, 刘龙松, 李卉, 陈海龙, 蒋中发, 王学勇, 刘海磊. 准噶尔盆地盆1井西凹陷石炭系—二叠系天然气特征及成藏主控因素[J]. 岩性油气藏, 2023, 35(3): 138-151.
[5] 石文武, 雍运动, 吴开龙, 田彦灿, 王鹏. 渤海湾盆地老爷庙地区火山岩速度建模与成像[J]. 岩性油气藏, 2021, 33(4): 101-110.
[6] 李树博, 郭旭光, 郑孟林, 王泽胜, 刘新龙. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1): 258-266.
[7] 郑庆华, 尤继元. 黄骅坳陷王官屯构造带白垩系火山岩油气成藏特征[J]. 岩性油气藏, 2019, 31(5): 44-51.
[8] 潘有军, 荆文波, 徐赢, 赵嗣君, 李继成, 陶登海. 火山岩油藏水平井体积压裂产能预测研究[J]. 岩性油气藏, 2018, 30(3): 159-164.
[9] 靳军, 王剑, 杨召, 刘金, 季汉成, 贾海波, 张晓刚. 准噶尔盆地克-百断裂带石炭系内幕储层测井岩性识别[J]. 岩性油气藏, 2018, 30(2): 85-92.
[10] 蔡冬梅, 叶涛, 鲁凤婷, 高坤顺, 任云鹏. 渤海海域中生界火山岩岩相特征及其识别方法[J]. 岩性油气藏, 2018, 30(1): 112-120.
[11] 孔垂显, 邱子刚, 卢志远, 贾俊飞, 常天全. 准噶尔盆地东部石炭系火山岩岩体划分[J]. 岩性油气藏, 2017, 29(6): 15-22.
[12] 何贤英, 刘勇, 许学龙, 刘邦兴, 张顺存. 西泉地区石炭系火山岩储层主控因素及有利储层预测[J]. 岩性油气藏, 2017, 29(3): 42-51.
[13] 刘小洪,冯明友,郗爱华,鄢晓荣,吴 宇,刘 畅 . 克拉美丽气田滴西地区石炭系火山岩储层成岩作用及孔隙演化[J]. 岩性油气藏, 2016, 28(1): 38-48.
[14] 张大权,邹妞妞,姜 杨,马崇尧,张顺存,杜社宽 . 火山岩岩性测井识别方法研究——以准噶尔盆地火山岩为例[J]. 岩性油气藏, 2015, 27(1): 108-114.
[15] 李 欣,杜德道,蔡郁文,王 珊 . 松辽盆地徐家围子地区火山岩储层主要次生矿物研究[J]. 岩性油气藏, 2014, 26(6): 98-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .