岩性油气藏 ›› 2021, Vol. 33 ›› Issue (4): 156–165.doi: 10.12108/yxyqc.20210417

• 油气田开发 • 上一篇    下一篇

纵向组合边界储层合采井压力响应特征及应用

史文洋1, 程时清1, 石志良2, 张城玮1, 李虹1, 屠坤1, 张郁哲3   

  1. 1. 中国石油大学 (北京)油气资源与探测国家重点实验室, 北京 102249;
    2. 中国石化石油勘探开发研究院, 北京 100083;
    3. 中国石化华北油气分公司 采气一厂, 郑州 450006
  • 收稿日期:2021-01-25 修回日期:2021-04-18 出版日期:2021-08-01 发布日期:2021-08-06
  • 第一作者:史文洋(1991-),男,中国石油大学(北京)在读博士研究生,研究方向为复杂类储层渗流与试井。地址:(102249)北京市昌平区府学路18号中国石油大学(北京)。Email:svenyoko@outlook.com
  • 通信作者: 程时清(1963-),男,博士,博士生导师,主要从事油气藏动态监测、油气藏工程、非常规油气田开发、油藏工程软件的研究和教学工作。Email:chengsq973@163.com。
  • 基金资助:
    国家自然科学基金项目“致密油藏注水诱发微裂缝机理及反演方法”(编号:11872073)资助

Pressure response behavior and application of commingled well in vertical combined boundary reservoir

SHI Wenyang1, CHENG Shiqing1, SHI Zhiliang2, ZHANG Chengwei1, LI Hong1, TU Kun1, ZHANG Yuzhe3   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Sinopec Research Institute of Petroleum Exploration and Production, Beijing 100083, China;
    3. No. 1 Gas Production Plant, Sinopec North China Oil and Gas Company, Zhengzhou 450006, China
  • Received:2021-01-25 Revised:2021-04-18 Online:2021-08-01 Published:2021-08-06

摘要: 针对目前多层合采试井模型m主要为单一边界类型的现状,以双层合采储层为例,建立了纵向组合边界储层渗流模型,依次利用Laplace变换、Bessel函数、Stehfest数值反演得到了压力响应半解析解,绘制了三类纵向组合边界储层的压力响应特征曲线,并划分了流动阶段,系统地分析了边界组合、边界占比对压力响应的影响。结果表明:“封闭+无限大”边界会引起拟径向流,拟径向流阶段压力导数值与封闭边界占比的乘积为定值;“定压+无限大”边界会引起拟定压边界流,且拟定压边界流阶段压力导数斜率与定压边界占比成线性正相关;“定压+封闭”边界会先引起主导层边界流、后引起定压边界流,且定压边界流压力值与定压边界占比的乘积为定值。根据压力响应曲线形态可直接定性诊断纵向组合边界的类型,边界流阶段的压力响应特征值可快速确定纵向组合边界的占比;当储层压力响应出现物性变差的径向复合储层以及双重介质储层特征时,应结合实际储层地质信息谨慎选择试井模型解释。

关键词: 多层合采, 纵向组合边界, 渗流, 试井分析

Abstract: Given current commingled reservoir well test model is single boundary type, this paper takes the doublelayer reservoir as an example to establish a vertical combined boundary(VCB)reservoir model,and the pressure response semi-analytical solution is obtained by Laplace transformation,Bessel function,Stehfest inversion. The pressure response curves of three VCB types were drawn and the flow stages were divided. The effects of VCB types,proportion on the pressure response were analyzed. The result is shown as follows: (1)The "closed and infinite" boundary will cause pseudo-radial flow regime, and the product between the pressure derivative in pseudo-radial flow stage and closed-boundary proportion is constant.(2)The "constant-pressure and infinite" boundary causes the pseudo constant-pressure boundary flow regime,and the pressure derivative slope in pseudo constant-pressure boundary flow stage is linearly related to the constant-pressure boundary proportion. (3)The "constant-pressure and closed" boundary appears the dominant layer boundary flow regime first,followed by the constant-pressure boundary flow regime,and the product between pressure value in constant-pressure boundary flow stage and constant-pressure proportion is constant. It is concluded that the pressure response can directly diagnose the VCB type,and pressure response feature value in the boundary flow stage can quickly determine the VCB proportion. In addition,when the pressure response appears the features of the radial composite reservoir with poor permeability outer zone or dual-porosity reservoir,the well test analysis model should be carefully selected in combination with the actual reservoir geological information.

Key words: multilayer commingled reservoir, vertical combined boundary, seepage flow, well test analysis

中图分类号: 

  • TE353.2
[1] SUN B, SHI W Y, Zhang R, et al. Transient behavior of vertical commingled well in vertical non-uniform boundary Radii reservoir. Energies, 2020, 13(9):2305.
[2] LEFKOVITS H C, HAZEBROEK P, ALLEN E E, et al. A study of the behavior of bounded reservoirs composed of stratified layers. SPE Journal, 1961, 1(1):43-58.
[3] 徐献芝, 况国华, 陈峰磊, 等.多层合采试井分析方法.石油学报, 1999, 20(5):43-47. XU X Z, KUANG G H, CHEN F L, et al. Multilayer commingled well test analysis method. Acta Petrolei Sinica, 1999, 20(5):43-47.
[4] 张望明, 韩大匡, 连淇祥, 等.多层油藏试井分析.石油勘探与开发, 2001, 38(3):63-66. ZHANG W M, HAN D K, LIAN Q X, et al. Multilayer reservoir well test analysis. Petroleum Exploration and Development, 2001, 38(3):63-66.
[5] 李顺初, 张普斋, 黄炳光.多层油藏压力分布的一般解.西南石油学院学报, 2002, 24(4):28-29. LI S C, ZHANG P Z, HUANG B G, et al. General solution of pressure distribution in multilayer reservoir. Journal of Southwest Petroleum University(Science & Technology Edition), 2002, 24(4):28-29.
[6] 高承泰, 孙贺东.多层越流油气藏试井分析方法.北京:石油工业出版社, 2018. GAO C T, SUN H D. Well test analysis method for multilayer crossflow oil and gas reservoir. Beijing:Petroleum Industry Press, 2018.
[7] 孙贺东, 高承泰, 周芳德.具有越流的多层气藏的压力曲线特征.西安石油学院学报(自然科学版), 2001, 16(6):25-29. SUN H D, GAO C T, ZHOU F D. Characteristics of pressure curve of multilayer gas reservoir with overflow. Journal of Xi'an Shiyou University(Natural Science Edition), 2001, 16(6):25-29.
[8] 孙贺东, 周芳德, 高承泰, 等.三层越流油藏井底压力的精确解.石油钻采工艺, 2003, 25(3):41-44. SUN H D, ZHOU D F, GAO C T. Exact solution and typical curve of three layers crossflow reservoir. Oil Drilling & Production Technology, 2003, 25(3):41-44.
[9] 程时清. 复杂结构井试井分析理论与方法. 北京:科学出版社, 2018. CHENG S Q. Theory and method of well test analysis for complex structure wells. Beijing:Science Press, 2018.
[10] 贾英兰.多层油气藏复杂渗流理论与试井分析方法研究.成都:西南石油大学, 2014. JIA Y L. Study on complex seepage theory and well test analysis method for multilayer oil and gas reservoirs. Chengdu:Southwest Petroleum University, 2014.
[11] 何应付, 尹洪军, 林木, 等.任意形状复合油藏压力动态的边界元分析.水动力学研究与进展(A辑), 2006, 21(6):700-705. HE Y F, YIN H J, LIN M, et al. Pressure transient analysis of composite reservoir using the boundary element method. Chinese Journal of Hydrodynamics, 2006, 21(6):700-705.
[12] 郭显赋, 梁景伟, 孙德巨, 等.复杂边界裂缝性低渗油藏有限元试井.断块油气田, 2011, 18(1):87-90. GUO X B, LIANG J W, SUN D J, et al. Finite-element well testing of low-permeability fractured reservoir with complex outer-boundary. Fault-Block Oil & Gas Field, 2011, 18(1):87-90.
[13] SHI W Y, CHENG S Q, MENG L X, et al. Pressure transient behavior of layered commingled reservoir with vertical inhomogeneous closed boundary. Journal of Petroleum Science and Engineering, 2020, 189(6):106995.
[14] 郑荣臣, 严谨, 张郁哲, 等.多层压裂改造气井椭圆渗流压力动态特征.断块油气田, 2020, 27(2):207-212. ZHENG R C, YAN J, ZHANG Y Z, et al. Pressure transient behavior of multi-layer fracturing gas wells with elliptical flow. Fault-Block Oil and Gas Field, 2020, 27(2):207-212.
[15] 赵向原, 胡向阳, 肖开华, 等.川西彭州地区雷口坡组碳酸盐岩储层裂缝特征及主控因素.石油与天然气地质, 2018, 39(1):30-39. ZHAO X Y, HU X Y, XIAO K H, et al. Characteristics and major control factors of natural fractures in carbonate reservoirs of Leikoupo Formation in Pengzhou area, western Sichuan Basin. Oil & Gas Geology, 2018, 39(1):30-39.
[16] 王志宏, 郝翠果, 李建明, 等.川西前陆盆地超压分布及成因机制.岩性油气藏, 2019, 31(6):1-8. WANG Z H, HAO C G, LI J M,et al. Distribution and genetic mechanism of overpressure in western Sichuan foreland basin. Lithologic Reservoirs, 2019, 31(6):1-8.
[17] 王登, 余江浩, 赵雪松, 等.四川盆地石柱地区自流井组页岩气成藏条件与勘探前景.岩性油气藏, 2020, 32(1):27-35. WANG D, YU J H, ZHAO X S, et al. Accumulation conditions and exploration potential of shale gas of Ziliujing Formation in Shizhu area. Lithologic Reservoirs, 2020, 32(1):27-35.
[18] 史文洋, 姚约东, 程时清, 等.川西潮坪相裂缝型碳酸盐岩分层酸压井压力动态分析.岩性油气藏, 2020, 32(1):152-160. SHI W Y, YAO Y D, CHENG S Q, et al. Pressure transient analysis for separate-layer acid fracturing well of tidal flat fractured carbonate reservoirs in western Sichuan Basin. Lithologic Reservoirs, 2020, 32(1):152-160.
[19] 罗志锋, 黄静云, 何天舒, 等.碳酸盐岩储层酸压裂缝高度延伸规律:以川西栖霞组为例.岩性油气藏, 2020, 32(2):169-176. LUO Z F, HUANG J Y, HE T S, et al. Extending regularity of fracture height by acid fracturing in carbonate reservoir:A case study of Qixia Formation in western Sichuan. Lithologic Reservoirs, 2020, 32(2):169-176.
[20] 王鹏, 沈忠民, 何崇康, 等.川南地区须家河组天然气地球化学特征及成藏过程.岩性油气藏, 2017, 29(5):19-27 WANG P, SHEN Z M, HE C K, et al. Geochemical characteristics and accumulation process of natural gas of Xujiahe Formation in southern Sichuan Basin. Lithologic Reservoirs, 2017, 29(5):19-27.
[21] 李新豫, 张静, 包世海, 等.川中地区须二段气藏地震预测陷阱分析及对策:以龙女寺区块为例.岩性油气藏, 2019, 31(6):1-8. LI X Y, ZHANG J, BA S H, et al. Analysis and countermeasures of seismic prediction traps for Xujiahe gas reservoir in central Sichuan Basin:A case study from Longnyusi block. Lithologic Reservoirs, 2019, 31(6):1-8.
[22] 韩波, 何治亮, 任娜娜, 等.四川盆地东缘龙王庙组碳酸盐岩储层特征及主控因素.岩性油气藏, 2018, 30(1):75-85. HAN B, HE Z L, REN N N, et al. Characteristics and main controlling factors of carbonate reservoirs of Longwangmiao Formation in eastern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):75-85.
[23] 陈志强, 吴思源, 白蓉, 等.基于流动单元的致密砂岩气储层渗透率测井评价:以川中广安地区须家河组为例.岩性油气藏, 2017, 29(6):76-83. CHEN Z Q, WU S Y, BAI R, et al. Logging evaluation for permeability of tight sandstone gas reservoirs based on flow unit classification:A case from Xujiahe Formation in Guang'an area, central Sichuan Basin. Lithologic Reservoirs, 2017, 29(6):76-83.
[24] 王睿婧, 刘树根, 张贵生, 等.川西坳陷孝泉-新场-合兴场地区须二段天然气气源判定及成藏分析.岩性油气藏, 2011, 23(4):100-105. WANG R J, LIU S G, ZHANG G S, et al. Judgement of natural gas resource and accumulation analysis of the second member of Xujiahe Formation in Xiaoquan-Xinchang-Hexingchang area of West Sichuan depression. Lithologic Reservoirs, 2011, 23(4):100-105.
[25] BOURDET D. Well test analysis:The use of advanced interpretation models. Elsevier Science, 2020.
[26] AGARWAl R G. Real gas pseudo-time:A new function for pressure buildup analysis of MHF gas wells. SPE 8279, 1979.
[27] AL HUSSAINY R, RAMEY H J, CRAWFORD P B. The flow of real gases through porous media. SPE Journal, 1966, 18(5):624-6361
[28] VAN EVERDINGEN A F. The skin effect and its influence on the productive capacity of a well. Journal Petroleum Technology, 1943, 5(6):171-176.
[29] VAN EVERDINGEN A F, HURST W. The application of the Laplace transformation to flow problems in reservoirs. J. Pet. Technol., 1949, 1(12):305-324.
[30] 赖锦, 王贵文.川中蓬莱地区须二段气藏特征及有利含气区预测.岩性油气藏, 2012, 24(5):43-49. LAI J, WANG G W. Gas reservoir characteristics of the second member of Xujiahe Formation and prediction of favorable gas bearing zones in Penglai area, central Sichuan Basin. Lithologic Reservoirs, 2012, 24(5):43-49.
[31] 唐群英, 尹太举, 路遥, 等.川东北普光地区须家河组裂缝特征描述.岩性油气藏, 2012, 24(2):42-47. TANG Q Y, YIN T J, LU Y, et al. Fracture features description of Xujiahe Formation in Puguang area, northeastern Sichuan Basin. Lithologic Reservoirs, 2012, 24(2):42-47.
[32] 徐樟有, 宋丽, 吴欣松, 等.川中地区上三叠统须家河组典型气藏解剖与天然气成藏主控因素分析.岩性油气藏, 2009, 21(2):7-11. XU Z Y, SONG L, WU X S, et al. Typical gas reservoirs and main controlling factors of reservoir-forming of Upper Triassic Xujiahe Formation in central Sichuan Basin. Lithologic Reservoirs, 2009, 21(2):7-11.
[1] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[2] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[3] 钟会影, 余承挚, 沈文霞, 毕永斌, 伊然, 倪浩铭. 考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征[J]. 岩性油气藏, 2024, 36(3): 172-179.
[4] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[5] 周浩, 梁利侠. 水平井探测半径计算方法[J]. 岩性油气藏, 2024, 36(1): 157-168.
[6] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[7] 卢迎波. 超稠油注气次生泡沫油生成机理及渗流特征[J]. 岩性油气藏, 2022, 34(6): 152-159.
[8] 蔡晖, 屈丹, 陈民锋. 组合井网储量动用规律及水平井加密合理技术策略——以渤海HD油田为例[J]. 岩性油气藏, 2021, 33(4): 147-155.
[9] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[10] 余燕, 周琳琅, 甘笑非, 胡燕, 淦文杰, 邓庄. 二次压力梯度三孔渗流模型及非线性渗流特征[J]. 岩性油气藏, 2020, 32(5): 143-150.
[11] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
[12] 崔永正, 姜瑞忠, 郜益华, 乔欣, 王琼. 空间变导流能力压裂井CO2驱试井分析[J]. 岩性油气藏, 2020, 32(4): 172-180.
[13] 赵晓姣, 屈展, 索向宇, 韩强, 赵慧博. 地层水物化作用下的泥页岩破裂压力计算[J]. 岩性油气藏, 2019, 31(2): 159-164.
[14] 吕端川, 林承焰, 任丽华, 宋金鹏, 狄喜凤. 杏六区东部分流河道砂体渗流单元组合及水淹模式[J]. 岩性油气藏, 2018, 30(5): 103-108.
[15] 王新杰. 致密气藏压裂水平井产能计算方法[J]. 岩性油气藏, 2018, 30(5): 161-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .