岩性油气藏 ›› 2019, Vol. 31 ›› Issue (2): 159–164.doi: 10.12108/yxyqc.20190218

• 石油工程 • 上一篇    

地层水物化作用下的泥页岩破裂压力计算

赵晓姣1,2,3, 屈展1,3,4, 索向宇5, 韩强3,4, 赵慧博6   

  1. 1. 西北工业大学 航空学院, 西安 710072;
    2. 西安石油大学 电子工程学院, 西安 710065;
    3. 西安石油大学陕西省油气井及储层渗流与岩石力学重点实验室, 西安 710065;
    4. 西安石油大学 石油工程学院, 西安 710065;
    5. 川庆钻探土库曼斯坦分公司 质量安全环保科, 西安 710051;
    6. 西安地质调查中心, 西安 710054
  • 收稿日期:2018-10-11 修回日期:2018-12-16 出版日期:2019-03-21 发布日期:2019-03-21
  • 第一作者:赵晓姣(1981-),女,西北工业大学在读博士研究生,研究方向为岩石力学和井壁稳定性。地址:(710065)陕西省西安市雁塔区电子二路18号西安石油大学陕西省油气井及储层渗流与岩石力学重点实验室。Email:zhaoxsyu@qq.com。
  • 基金资助:
    国家自然科学基金项目“基于构型力学理论的井壁损伤失稳研究”(编号:51674200)、“基于随钻及多尺度方法的页岩力学性质实验与理论研究”(编号:51704233)和陕西省教育厅科研计划项目“耦合改进的可拓理论和FAHP的钻机系统脆性分析新方法”(编号:18JK0610)、“新疆克拉玛依岩浆混合岩体中长石矿物微区精细结构特征研究”(编号:2017JM4031)联合资助

Calculation of shale fracturing pressure under physicochemical effect of formation water

ZHAO Xiaojiao1,2,3, QU Zhan1,3,4, SUO Xiangyu5, HAN Qiang3,4, ZHAO Huibo6   

  1. 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China;
    2. School of Electronic Engineering, Xi'an Shiyou University, Xi'an, 710065, China;
    3. The Key Laboratory of Well Stability and Fluid & Rock Mechanics in Oil and Gas Reservoir of Shaanxi Province, Xi'an Shiyou University, Xi'an 710065;
    4. School of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    5. Quality Safety and Environmental Protection Section, Chuanqing Drilling Turkmenistan Branch, Xi'an 710051, China;
    6. Xi'an Center of Geological Survey, Xi'an 710054, China
  • Received:2018-10-11 Revised:2018-12-16 Online:2019-03-21 Published:2019-03-21

摘要: 钻井过程中,钻井液与井壁围岩的接触产生水化作用会导致井壁围岩变形,引发井壁缩颈坍塌、破裂等事故。根据弹塑性力学和岩石力学相关理论,应用最大张应力准则,在黄氏模型的基础上考虑了钻井液在岩石孔隙中的渗流而在井壁围岩所产生的附加应力场、岩石的孔隙度和钻井液水化作用的影响,建立了泥页岩破裂压力模型,结合现场压裂实验数据和不同含水率泥页岩岩心三轴压缩实验结果,计算得到了泥页岩破裂压力的预测值、泥页岩含水率与抗张强度和破裂压力的关系曲线。结果表明:本文模型预测值和实测值相比,误差为3.65%,更加接近实测地层破裂压力,破裂压力和抗张强度均随着含水率的升高而降低,说明水软化了泥页岩,降低了它的力学性能。

关键词: 泥页岩, 破裂压力, 水化, 渗流, 含水率

Abstract: In the process of drilling,hydration occurs when the drilling fluid contacts with the surrounding rock of the wellbore, which will lead to the deformation of shaft wall and cause the occurrence of accidents such as sidewall necking, collapse and cracking. According to the theory of elastic-plastic mechanics, rock mechanics and the maximum tensile stress criterion, the shale fracture pressure model was established on the basis of Huang's model,considering the effects of additional stress field caused by the percolation of drilling fluids in rock pores of the well wall rock, rock porosity and the fluid hydration. According to field fracturing experiment data and triaxial compression test results of shale cores with different water contents,the prediction value of shale fracture pressure,and the relation curves of shale water contents with tensile strength and the fracture pressure were obtained. The results show that the error of this model is 3.65% compared with the measured value,which means that the predicted value is closer to the measured fracture pressure,and both the fracture pressure and tensile strength decrease with the increase of water contents. It shows that the water softens the shale and reduces its mechanical properties.

Key words: shale, fracture pressure, hydration, seepage, water content

中图分类号: 

  • TE21
[1] 刘向君, 罗平亚. 泥岩地层井壁稳定性研究. 天然气工业, 1997, 17(1):45-48. LIU X J, LUO P Y. Study on the stability of well wall in mudstone strata. Natural Gas Industry, 1997, 17(1):45-48.
[2] 屈展, 王萍.泥页岩井壁蠕变损伤失稳研究.北京:科学出版社. 2016:10. QU Z, WANG P. Creep damage instability study of shale. Beijing:Science Press, 2016:10.
[3] 张莹莹, 黄思静.华庆地区长6油层组方解石胶结物特征.岩性油气藏, 2012, 24(2):48-52. ZHANG Y Y, HUANG S J. Characteristics of calcite cements of Chang 6 oil reservoir set in Huaqing area. Lithologic Reservoirs, 2012, 24(2):48-52.
[4] 王萍, 屈展, 黄海, 等.含水状态下硬脆性泥页岩蠕变特性实验研究.科学技术与工程, 2016, 16(15):66-71. WANG P, QU Z, HUANG H, et al. Creep experimental study of brittle shale triaxial state under aqueous. Science Technology & Engineering, 2016, 16(15):66-71.
[5] 王萍, 屈展, 黄海.地层水矿化度对硬脆性泥页岩蠕变规律影响的试验研究.石油钻探技术, 2015, 43(5):63-68. WANG P, QU Z, HUANG H. Experimental study of the effect of formation water salinity on creep laws of the hard-brittle shale. Petroleum Drilling Techniques, 2015, 43(5):63-68.
[6] 张洪, 孟选刚, 邵长金, 等.水平压裂裂缝形成机理及监测:以七里村油田为例.岩性油气藏, 2018, 30(5):138-145. ZHANG H, MENG X G, SHAO C J, et al. Forming mechanism and monitoring of horizontal hydraulic fracture:a case from Qilicun oilfield. Lithologic Reservoirs, 2018, 30(5):138-145.
[7] 马飞英, 王永清, 王林, 等.煤岩中水分含量对渗透率的影响. 岩性油气藏, 2013, 25(3):97-101. MA F Y, WANG Y Q, WANG L, et al. Influence of moisture content in coal rock on permeability. Lithologic Reservoirs, 2013, 25(3):97-101.
[8] 张烈辉, 单保超, 赵玉龙, 等.页岩气藏表观渗透率和综合渗流模型建立.岩性油气藏, 2017, 29(6):108-118. ZHANG L H, SHAN B C, ZHAO Y L, et al. Establishment of apparent permeability model and seepage flow model for shale reservoir. Lithologic Reservoirs, 2017, 29(6):108-118.
[9] 黄荣樽.水力压裂裂缝的起裂和扩展.石油勘探与开发, 1982(5):65-77. HUANG R Z. Initiation and propagation of fractures in hydraulic fracturing. Petroleum Exploration & Development, 1982(5):65-77.
[10] 孙文峰, 李玮, 董智煜, 等.页岩孔隙结构表征方法新探索.岩性油气藏, 2017, 29(2):125-130. SUN W F, LI W, DONG Z Y, et al. A new approach to the characterization of shale pore structure. Lithologic Reservoirs, 2017, 29(2):125-130.
[11] EATON B A. Fracture gradient prediction and its application in oilfield operations. Journal of Petroleum Technology, 1969, 21(10):1353-1360.
[12] ANDERSON R A, INGRAM D S, ZANIER A M. Determining fracture pressure gradient from well logs. Journal of Petroleum Technology, 1973, 25(11):1259-1268.
[13] DASGUPTA S, CHATTERJEE R, MOHANTY S P. Prediction of pore pressure and fracture pressure in Cauvery and KrishnaGodavari basins, India. Marine & Petroleum Geology, 2016, 78:493-506.
[14] MA T, ZHANG Q B, CHEN P, et al. Fracture pressure model for inclined wells in layered formations with anisotropic rock strengths. Journal of Petroleum Science & Engineering, 2016, 149:393-408.
[15] MA T, WU B, FU J, et al. Fracture pressure prediction for layered formations with anisotropic rock strengths. Journal of Natural Gas Science & Engineering, 2017, 38:485-503.
[16] 黄荣樽.地层破裂压力预测模式的探讨.华东石油学院学报, 1984(4):16-28. HUANG R Z. A model for predicting formation fracture pressure. Journal of the University of Petroleum, China, 1984(4):16-28.
[17] 严向阳, 胡永全, 李楠, 等.泥页岩地层破裂压力计算模型研究.岩性油气藏, 2015, 27(2):109-113. YAN X Y, HU Y Q, LI N, et al. Calculation model of breakdown pressure in shale formation. Lithologic Reservoirs, 2015, 27(2):109-113.
[18] 邓金根, 刘杨, 蔚宝华, 等.高温高压地层破裂压力预测方法. 石油钻探技术, 2009, 37(5):43-46. DENG J G, LIU Y, WEI B H, et al. Formation fracture pressure prediction method in high temperature and high-pressure formations. Petroleum Drilling Techniques, 2009, 37(5):43-46.
[19] 东振, 刘亚东, 鲍清英, 等.基于断裂力学的煤层气井破裂压力计算方法.东北石油大学学报, 2015, 39(6):111-120. DONG Z, LIU Y D, BAO Q Y, et al. Calculation method for fracture pressure of coalbed methane well based on fracture mechanics. Journal of Northeast Petroleum University, 2015, 39(6):111-120.
[20] 李传亮.射孔完井条件下的岩石破裂压力计算公式.石油钻采工艺, 2002, 24(2):37-38. LI C L. Calculation formula of rock fracture pressure under perforated completion condition. Oil Drilling & Production Technology.2002, 24(2):37-38.
[21] 李培超.射孔完井条件下地层破裂压力修正公式.上海工程技术大学学报, 2009,23(2):157-160. LI P C. Modified formula of formation breakdown pressure for perforation completions of vertical wells. Journal of Shanghai University of Engineering Science, 2009, 23(2):157-160.
[22] 金衍, 陈勉.井壁稳定力学.北京:科学出版社, 2012:56-58. JIN Y, CHEN M. Wellbore stability mechanics. Beijing:Science Press, 2012:56-58.
[23] CHENEVERT M E, PERNOT V. Control of shale swelling pressures using inhibitive water-base muds. SPE 49263, 1998.
[24] 王京印.泥页岩井壁稳定性力学化学耦合模型研究.青岛:中国石油大学(华东), 2007. WANG J Y. Chemical-mechanical modeling of borehole stability in shale. Qingdao:China University of Petroleum, 2007.
[25] CHEN G Z, CHENEVERT M E, SHARMA M M, et al. A study of wellbore stability in shales including poroelastic, chemical, and thermal effects. Journal of Petroleum Science and Engineering, 2003, 38:167-176.
[26] GUO J C, ZHAO Z H, HE S G. A new method for shale brittleness evaluation. Environment Earth Science, 2015, 73:5800-5865.
[1] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[2] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[3] 邹连松, 徐文礼, 梁西文, 刘皓天, 周坤, 霍飞, 周林, 文华国. 川东地区下侏罗统自流井组东岳庙段泥页岩沉积特征及物质来源[J]. 岩性油气藏, 2024, 36(4): 122-135.
[4] 钟会影, 余承挚, 沈文霞, 毕永斌, 伊然, 倪浩铭. 考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征[J]. 岩性油气藏, 2024, 36(3): 172-179.
[5] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[6] 周浩, 梁利侠. 水平井探测半径计算方法[J]. 岩性油气藏, 2024, 36(1): 157-168.
[7] 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177.
[8] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[9] 卢迎波. 超稠油注气次生泡沫油生成机理及渗流特征[J]. 岩性油气藏, 2022, 34(6): 152-159.
[10] 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171.
[11] 蔡晖, 屈丹, 陈民锋. 组合井网储量动用规律及水平井加密合理技术策略——以渤海HD油田为例[J]. 岩性油气藏, 2021, 33(4): 147-155.
[12] 史文洋, 程时清, 石志良, 张城玮, 李虹, 屠坤, 张郁哲. 纵向组合边界储层合采井压力响应特征及应用[J]. 岩性油气藏, 2021, 33(4): 156-165.
[13] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[14] 余燕, 周琳琅, 甘笑非, 胡燕, 淦文杰, 邓庄. 二次压力梯度三孔渗流模型及非线性渗流特征[J]. 岩性油气藏, 2020, 32(5): 143-150.
[15] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .