岩性油气藏 ›› 2023, Vol. 35 ›› Issue (2): 1–10.doi: 10.12108/yxyqc.20230201

• 地质勘探 • 上一篇    下一篇

柴达木盆地涩北地区第四系泥岩型生物气储层孔隙有效性评价

司马立强1,2, 马骏1,2, 刘俊丰3, 杨会洁3, 王亮4, 赵宁1,2   

  1. 1. 西南石油大学 地球科学与技术学院, 成都 610500;
    2. 油气藏地质及开发工程国家重点实验室·西南石油大学, 成都 610500;
    3. 中国石油青海油田公司 勘探开发研究院, 甘肃 敦煌 736202;
    4. 成都理工大学 能源学院, 成都 610059
  • 收稿日期:2022-05-24 修回日期:2022-07-18 出版日期:2023-03-01 发布日期:2023-03-07
  • 第一作者:司马立强(1961-),男,教授,主要从事油气井测井方法、解释及地质应用方面的科研与教学工作。地址:(610500)四川省成都市新都区新都大道8号西南石油大学。Email:smlq2000@126.com。
  • 通信作者: 马骏(1997-),男,西南石油大学在读硕士研究生,研究方向为岩石物理实验、测井方法解释与评价。Email:1725995839@qq.com。
  • 基金资助:
    国家科技重大专项“四川盆地大型碳酸盐岩气田开发示范工程”(编号:2016ZX05052)和国家自然科学基金项目“热液作用下的深部含铀油蚀变砂岩地球物理响应及铀油兼探方法”(编号:U2003102)联合资助。

Evaluation of pore effectiveness of Quaternary mudstone biogas reservoirs in Sebei area, Qaidam Basin

SIMA Liqiang1,2, MA Jun1,2, LIU Junfeng3, YANG Huijie3, WANG Liang4, ZHAO Ning1,2   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu 610500, China;
    3. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China;
    4. College of Energy Resources, Chengdu University of Technology, Chengdu 610059, China
  • Received:2022-05-24 Revised:2022-07-18 Online:2023-03-01 Published:2023-03-07

摘要: 通过低场核磁共振实验分析了柴达木盆地涩北地区第四系泥岩型生物气储层在饱和水状态及渐变烘干温度状态下的T2谱,明确了孔隙流体的核磁响应特征,以评价孔隙的有效性。研究结果表明: ①核磁共振实验是以饱和水状态T2谱为基础,采用正态分布函数拟合构建了离心束缚水T2谱,确定了可动流体和毛管束缚流体T2截止值,用于划分出流体类型并开展了孔隙有效性评价。②研究区岩样饱和水状态T2谱谱峰呈左小右大的形态,右峰幅度值远大于左峰,占T2谱幅度值90%以上;随着烘干温度的升高,T2谱幅度减小且左移趋势明显;束缚水T2谱形态近似于正态分布,起始位置与饱和水状态的T2谱基本重合。③研究区可动流体T2截止值T2 C1平均为3.3 ms,毛管束缚流体T2截止值T2 C2平均为1.8 ms;孔隙流体包括可动水、毛管束缚水和黏土束缚水,黏土束缚水T2小于T2 C2,毛管束缚水T2大于T2 C2且小于T2 C1,可动流体T2大于T2 C1;毛管束缚水含量最高,黏土束缚水其次,两者占总孔隙流体的84.43%~95.06%,可动水含量低。④研究区储层有效孔隙占总孔隙的54.99%,主要为毛管束缚孔,黏土束缚孔为无效孔隙;黏土含量越高,有效孔隙度越小。

关键词: 生物气, 泥岩型储层, 低场核磁共振, T2谱, 孔隙有效性, 第四系, 涩北地区, 柴达木盆地

Abstract: Through low-field NMR experiments, the T2 spectra of the Quaternary mudstone biogas reservoirs in the Sebei area of Qaidam Basin were analyzed under saturated water state and gradient drying temperature state, and the NMR response characteristics of pore fluids were clarified to evaluate the effectiveness of pores. The results show that:(1) Based on the T2 spectrum under the saturated water state, the centrifugal bound water T2 spectrum was constructed by fitting the normal distribution function, the T2 cutoff values of movable fluid and capillary bound fluid were determined, the fluid types were divided, and the pore effectiveness evaluation was carried out. (2) The T2 spectral peaks of water-saturated rock samples in the study area are small on the left and large on the right, and the amplitude of the right peak is much larger than that of the left peak, accounting for more than 90% of the T2 spectral amplitude. With the increase of drying temperature, the amplitude of the T2 spectrum decreases and the left shift trend is obvious. The T2 spectrum shape of the bound water is approximately normal distribution, and the starting position basically coincides with the T2 spectrum under the saturated water state.(3) The T2 cutoff value(T2 C1) of movable fluid in the study area is 3.3 ms on average, and the average T2 cutoff value(T2 C2) of capillary bound fluid is 1.8 ms. The pore fluids include movable water, capillary bound water and clay bound water. The clay bound water T2 is less than T2 C2, and the capillary bound water T2 is larger than T2 C2 and less than T2 C1, and the movable fluid T2 is larger than T2 C1. The capillary bound water content is the highest, followed by the clay irreducible water, which account for 84.43%-95.06% of the total pore fluids, and the movable water content is low.(4) The effective pores of the reservoir in the study area account for 54.99% of the total pores and are mainly capillary-bound pores, and clay-bound pores are ineffective pores. The higher the clay content, the smaller the effective porosity.

Key words: biogas, mudstone-type reservoir, low-field NMR, T2 spectrum, pore availability, Quaternary, Sebei area, Qaidam Basin

中图分类号: 

  • TE122.2
[1] 张晓宝, 徐自远, 段毅, 等. 柴达木盆地三湖地区第四系生物气的形成途径与运聚方式[J]. 地质论评, 2003, 49(2):168-174. ZHANG Xiaobao, XU Ziyuan, DUAN Yi, et al. Metabolite pathway of the Quaternary biogenetic gases and their migration and accumulation in the Qaidam Basin[J]. Geological Review, 2003, 49(2):168-174.
[2] 管志强, 夏斌, 吕宝凤. 柴达木盆地三湖地区生物气成藏基本要素及其配置性[J]. 天然气地球科学, 2008, 19(2):165-170. GUAN Zhiqiang, XIA Bin, LYU Baofeng. Elementary factors and their configuration of biogas accumulation in eastern Qaidam Basin[J]. Natural Gas Geoscience, 2008, 19(2):165-170.
[3] 马力宁. 青海涩北第四系大型生物成因气气田主体开发技术研究[D]. 成都:西南石油学院, 2004. MA Lining. Research on the main development technology of the Quaternary large-scale biogenic gas field in Sebei, Qinghai[D]. Chengdu:Southwest Petroleum Institute, 2004.
[4] 唐相路, 姜振学, 邵泽宇, 等. 第四系泥岩型生物气储层特征及动态成藏过程[J]. 现代地质, 2022, 36(2):682-694. TANG Xianglu, JIANG Zhenxue, SHAO Zeyu, et al. Reservoir characteristics and dynamic accumulation process of the Quaternary mudstone biogas[J]. Modern Geology, 2022, 36(2):682-694.
[5] 赵佩, 李贤庆, 田兴旺, 等. 川南地区龙马溪组页岩气储层微孔隙结构特征[J]. 天然气地球科学, 2014, 25(6):947-956. ZHAO Pei, LI Xianqing, TIAN Xingwang, et al. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J]. Natural Gas Geoscience, 2014, 25(6):947-956.
[6] 陈秀娟, 刘之的, 刘宇羲, 等. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1):22-31. CHEN Xiujuan, LIU Zhidi, LIU Yuxi, et al. Research into the pore structure of tight reservoirs:A review[J]. Geophysical and Geochemical Exploration, 2022, 46(1):22-31.
[7] 况晏, 司马立强, 瞿建华, 等.致密砂砾岩储层孔隙结构影响因素及定量评价:以玛湖凹陷玛131井区三叠系百口泉组为例[J]. 岩性油气藏, 2017, 29(4):91-100. KUANG Yan, SIMA Liqiang, QU Jianhua, et al. Influencing factors and quantitative evaluation for pore structure of tight glutenite reservoirs:A case of the Triassic Baikouquan Formation in Ma 131 well field, Mahu Sag[J]. Lithologic Reservoirs, 2017, 29(4):91-100.
[8] 龚小平, 唐洪明, 赵峰, 等. 四川盆地龙马溪组页岩储层孔隙结构的定量表征[J]. 岩性油气藏, 2016, 28(3):48-57. GONG Xiaoping, TANG Hongming, ZHAO Feng, et al. Quantitative characterization of pore structure in shale reservoirs of Longmaxi Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(3):48-57.
[9] 刘永. 基于核磁共振流态分析的页岩微纳米孔隙类型划分方法[D]. 北京:中国地质大学(北京), 2018. LIU Yong. A study of shale pore size classification by using low field nuclear magnetic resonance fluid typing method[D]. Beijing:China University of Geosciences(Beijing), 2018.
[10] CHANG Dahai, VINEGAR H J, MORRISS C, et al. Effective porosity, producible fluid, and permeability in carbonates from NMR logging[J]. Log Analyst, 1997, 38(2):60-72.
[11] 黄杰, 杜玉洪, 王红梅, 等. 特低渗储层微观孔隙结构与可动流体赋存特征:以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5):93-101. HUANG Jie, DU Yuhong, WANG Hongmei, et al. Characteristics of micro pore structure and movable fluid of extra-low permeability reservoirs:A case study of lower Et1 reservoir in A' er Sag, Erlian Basin[J]. Lithologic Reservoirs, 2020, 32(5):93-101.
[12] SUN Mengdi, YU Bingsong, HU Qinhong, et al. Pore connectivity and tracer migration of typical shales in south China[J]. Fuel, 2017, 203:32-46.
[13] MINH C C, JAIN V, GRIFFITHS R, et al. NMR T2 fluids substitution[R]. Reykjavik, Iceland:SPWLA 57th Annual Logging Symposium, 2016.
[14] STRALEY C, ROSSINI D, VINEGAR H J, et al. Core analysis by low-field NMR[J]. Log Analyst, 1997, 38(2):84-93.
[15] 孙军昌, 陈静平, 杨正明, 等. 页岩储层岩心核磁共振响应特征实验研究[J]. 科技导报, 2012, 30(14):25-30. SUN Junchang, CHEN Jingping, YANG Zhengming, et al. Experimental study of the NMR characteristics of shale reservoir rock[J]. Science & Technology Review, 2012, 30(14):25-30.
[16] LIU Yong, YAO Yanbin, LIU Dameng, et al. Shale pore size classification:An NMR fluid typing method[J]. Marine and Petroleum Geology, 2018, 96:591-601.
[17] 向雪冰, 司马立强, 王亮, 等. 页岩气储层孔隙流体划分及有效孔径计算:以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4):137-146.XIANG Xuebing, SIMA Liqiang, WANG Liang, et al. Pore fluid division and effective pore size calculation of shale gas reservoirs:A case study of Longtan Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(4):137-146.
[18] 蒋裕强, 刘雄伟, 付永红, 等. 渝西地区海相页岩储层孔隙有效性评价[J]. 石油学报, 2019, 40(10):1233-1243. JIANG Yuqiang, LIU Xiongwei, FU Yonghong, et al. Evaluation of effective porosity in marine shale reservoirs, western Chongqing[J]. Acta Petrolei Sinica, 2019, 40(10):1233-1243.
[19] 朱明, 贾春明, 穆玉庆, 等. 基于正态分布拟合的致密砂砾岩储层核磁共振测井可变T2截止值计算方法[J]. 石油地球物理勘探, 2021, 56(3):612-621. ZHU Ming, JIA Chunming, MU Yuqing, et al. A method of predicting T2 cutoffs from NMR logging data of tight glutenite reservoirs based on normal distribution simulation[J]. Petroleum Geophysical Exploration, 2021, 56(3):612-621.
[20] 吴丰, 司马立强, 杨洪明, 等. 柴西地区复杂岩性核磁共振T2 截止值研究[J]. 测井技术, 2014, 38(2):144-149. WU Feng, SIMA Liqiang, YANG Hongming, et al. Research on NMR T 2 cutoff of complex lithology in the west Qaidam Basin[J]. Logging Technology, 2014, 38(2):144-149.
[21] 朱筱敏, 康安, 胡宗全, 等. 柴达木盆地第四系层序地层特征与油气评价[J]. 石油勘探与开发, 2002, 29(1):56-60. ZHU Xiaomin, KANG An, HU Zongquan, et al. Quaternary sequence stratigraphy and hydrocarbon evaluation in Qaidam Basin[J]. Petroleum Exploration and Development, 2002, 29(1):56-60.
[22] 马翔宇. 多层气藏试井分析[D]. 北京:中国地质大学(北京), 2012. MA Xiangyu. Well test analysis of multi-layered gas reservoir[D]. Beijing:China University of Geosciences(Beijing), 2012.
[23] 胡鹏轩. 涩北一号气田水侵规律及开发对策研究[D]. 成都:西南石油大学, 2019. HU Pengxuan. Water invasion rule and development strategy of Sebei-1 gas field[D]. Chengdu:Southwest Petroleum University, 2019.
[24] TESTAMANTI M N, REZAEE R. Determination of NMR T2 cut-off for clay bound water in shales:A case study of Carynginia Formation, Perth Basin, Western Australia[J]. Journal of Petroleum Science and Engineering, 2017, 149:497-503.
[25] 时建超, 屈雪峰, 雷启鸿, 等. 致密油储层可动流体分布特征及主控因素分析:以鄂尔多斯盆地长7储层为例[J]. 天然气地球科学, 2016, 27(5):827-834. SHI Jianchao, QU Xuefeng, LEI Qihong, et al. Distribution characteristics and controlling factors of movable fluid in tight oil reservoirs:A case study of Chang 7 reservoir in Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(5):827-834.
[26] YUAN Yujie, REZAEE R, VERRALL M, et al. Pore characterization and clay bound water assessment in shale with a combination of NMR and low-pressure nitrogen gas adsorption-Science Direct[J]. International Journal of Coal Geology, 2018, 194:11-21.
[27] 李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2018, 30(1):140-149. LI Min, WANG Hao, CHEN Meng. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:A case study of Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 2018, 30(1):140-149.
[28] 冒海军, 郭印同, 王光进, 等. 黏土矿物组构对水化作用影响评价[J]. 岩土力学, 2010, 31(9):2723-2728. MAO Haijun, GUO Yintong, WANG Guangjin, et al. Evaluation of impact of clay mineral fabrics on hydration process[J]. Rock and Soil Mechanics, 2010, 31(9):2723-2728.
[29] 毛惠, 邱正松, 黄维安, 等. 温度和压力对黏土矿物水化膨胀特性的影响[J].石油钻探技术, 2013, 41(6):56-61. MAO Hui, QIU Zhengsong, HUANG Weian, et al. The effects of temperature and pressure on the hydration swelling characterietics of clay mineral[J]. Petroleum Drilling Technology, 2013, 41(6):56-61.
[30] 余致理, 郭高峰, 余恒, 等. 水化作用下页岩微观孔隙结构伤害特征[J]. 西安石油大学学报(自然科学版), 2022, 37(1):44-50. YU Zhili, GUO Gaofeng, YU Heng, et al. Damage of hydration effect to micropore structure of shale[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2022, 37(1):44-50.
[1] 岳世俊, 刘应如, 项燚伟, 王玉林, 陈汾君, 郑长龙, 景紫岩, 张婷静. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
[2] 张振华, 张小军, 钟大康, 苟迎春, 张世铭. 柴达木盆地西北部南翼山地区古近系下干柴沟组上段储层特征及主控因素[J]. 岩性油气藏, 2023, 35(3): 29-39.
[3] 完颜泽, 龙国徽, 杨巍, 柴京超, 马新民, 唐丽, 赵健, 李海鹏. 柴达木盆地英雄岭地区古近系油气成藏过程及其演化特征[J]. 岩性油气藏, 2023, 35(2): 94-102.
[4] 杨韬政, 刘成林, 田继先, 李培, 冉钰, 冯德浩, 李国雄, 吴育平. 柴达木盆地大风山凸起地层压力预测及成因分析[J]. 岩性油气藏, 2023, 35(1): 96-107.
[5] 夏青松, 陆江, 杨鹏, 张昆, 杨朝屹, 聂俊杰, 朱云舫, 李立芳. 柴达木盆地英西地区渐新统下干柴沟组上段储层微观孔隙结构特征[J]. 岩性油气藏, 2023, 35(1): 132-144.
[6] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
[7] 崔俊, 毛建英, 陈登钱, 施奇, 李雅楠, 夏晓敏. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53.
[8] 赵思思, 李建明, 柳金城, 李积永, 崔俊. 柴达木盆地英西地区古近系下干柴沟组上段TSR与储层改造[J]. 岩性油气藏, 2022, 34(2): 66-74.
[9] 杜江民, 龙鹏宇, 秦莹民, 张桐, 马宏宇, 盛军. 柴达木盆地英西地区渐新统E32储层特征及成藏模式[J]. 岩性油气藏, 2021, 33(5): 1-10.
[10] 李翔, 王建功, 李飞, 王玉林, 伍坤宇, 李亚锋, 李显明. 柴达木盆地西部始新统湖相微生物岩沉积特征——以西岔沟和梁东地区下干柴沟组为例[J]. 岩性油气藏, 2021, 33(3): 63-73.
[11] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[12] 龙国徽, 王艳清, 朱超, 夏志远, 赵健, 唐鹏程, 房永生, 李海鹏, 张娜, 刘健. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏, 2021, 33(1): 145-160.
[13] 田光荣, 王建功, 孙秀建, 李红哲, 杨魏, 白亚东, 裴明利, 周飞, 司丹. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144.
[14] 孔红喜, 王远飞, 周飞, 朱军, 陈阳阳, 宋德康. 鄂博梁构造带油气成藏条件分析及勘探启示[J]. 岩性油气藏, 2021, 33(1): 175-185.
[15] 田继先, 赵健, 张静, 孔骅, 房永生, 曾旭, 沙威, 王牧. 柴达木盆地英雄岭地区硫化氢形成机理及分布预测[J]. 岩性油气藏, 2020, 32(5): 84-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .