岩性油气藏 ›› 2024, Vol. 36 ›› Issue (5): 99–110.doi: 10.12108/yxyqc.20240510

• 地质勘探 • 上一篇    下一篇

四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素

杨学锋1, 赵圣贤1, 刘勇1, 刘绍军1, 夏自强1, 徐飞2, 范存辉2, 李雨桐2   

  1. 1. 中国石油西南油气田公司 页岩气研究院, 成都 610500;
    2. 西南石油大学 地球科学与技术学院, 成都 610500
  • 收稿日期:2023-06-14 修回日期:2023-07-24 出版日期:2024-09-01 发布日期:2024-09-04
  • 第一作者:杨学锋(1978—),男,博士,高级工程师,主要从事油气田开发方面的研究工作。地址:(610500)四川省成都市成华区建设北路一段83号页岩气研究院。Email:yangxuef@petrochina.com.cn。
  • 基金资助:
    中国石油西南油气田公司科研项目“双龙—罗场向斜富集条件及有利区研究”(编号:20210304-07)资助。

Main controlling factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Ningxi area,Sichuan Basin

YANG Xuefeng1, ZHAO Shengxian1, LIU Yong1, LIU Shaojun1, XIA Ziqiang1, XU Fei2, FAN Cunhui2, LI Yutong2   

  1. 1. Research Institute of Shale Gas, PetroChina Southwest Oil & Gas Field Company, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
  • Received:2023-06-14 Revised:2023-07-24 Online:2024-09-01 Published:2024-09-04

摘要: 通过岩心观察、实验测试、地球物理解释及生产动态资料评价,对四川盆地宁西地区奥陶系五峰组—志留系龙马溪组烃源岩和储层特征进行了分析,结合构造-热演化-压力演化史、断层发育特征,探讨了页岩气富集的主控因素。研究结果表明:①宁西地区五峰组—龙马溪组一段1亚段(龙一1)发育深水陆棚相富有机质页岩,干酪根类型以Ⅰ型为主,有机质丰度较高,TOC平均值大于3.8%,Ro平均值高于3.0%,处于过成熟阶段;优质烃源岩分布于五峰组—龙一13小层,龙一14小层生烃潜力差。②研究区五峰组—龙一1亚段储集层条件优越,脆性指数高,平均值大于55%,自下而上呈下降趋势;储集空间有纳米级无机孔和有机孔、构造成因高角度剪切缝和垂直缝;孔隙度为2.20%~5.30%,平均值为3.84%,龙一11—龙一13小层孔隙度较大。③研究区页岩气成藏模式为层内自生自储,受控于源-储配置、构造-热演化、断层级别和裂缝发育程度,源-储配置控基础,脆性矿物含量和孔隙度值越高,TOC值越高;构造-热演化调气藏,晚二叠世(250 Ma)以前地层持续埋藏及峨眉山大火成岩省促进了五峰组—龙马溪组页岩气热解生烃,晚白垩世(66 Ma)至今,构造抬升使气藏发生调整与散失;断层控保存,层内发育的断层有利于页岩气的保存,断层规模越大,越不利于页岩气富集;裂缝系统控产能,向斜中部构造变形弱,断层密度低,裂缝发育程度中等,有利于页岩气的富集,而向斜周缘构造变形强度大,断层密度大,裂缝系统极为发育,不利于页岩气富集。

关键词: 页岩气, 深水陆棚相, 自生自储, 源-储配置, 构造-热演化, 断层密度, 脆性指数, 五峰组—龙马溪组, 宁西地区, 四川盆地

Abstract: Through core observation,experimental testing,geophysical interpretation and production dynamic data evaluation,the characteristics of source rocks and reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Ningxi area of Sichuan Basin were analyzed. Combined with the history of tectonicthermal evolution-pressure evolution and fault development,the main controlling factors of shale gas enrichment were discussed. The results show that:(1)Organic-rich shale in deep-water shelf facies is developed in Wufeng Formation to the submember of the first member of Longmaxi Formation(Long 11),The kerogen is mainly typeⅠ,with a high organic matter abundance,an average TOC value greater than 3.8%,and an average Ro value greater than 3.0%,indicating that it is in the over mature stage. High-quality source rocks are distributed in Wufeng Formation to the third sublayer of Long11,whilethe fourth sublayer ofLong11 has poor hydrocarbon generation potential.(2)The reservoir conditions of Wufeng Formation toLong11 in the study area are superior, with a high brittleness index and an average value greater than 55%,showing a downward trend from bottom to top. The reservoir spaces include nanoscale inorganic and organic pores,as well as high angle shear fractures and vertical fractures caused by structural factors. The porosity ranges from 2.20% to 5.30%,with an average of 3.84%. The porosity of the first to third sublayers of Long11 is relatively high.(3)The accumulation model of shale gas in the study area is “self generation and self reservoir” within the layer,controlled by source-reservoir configuration,tectonic-thermal evolution,fault level,and fracture development degree. The source-reservoir configuration controls the foundation,and the higher the brittle mineral content and porosity value,the higher the TOC value. Continuous burial of strata before Late Permian(250 Ma)and Emeishan Large Igneous Province promoted the pyrolysis and hydrocarbon generation of shale gas of Wufeng-Longmaxi Formation. From the Late Cretaceous(66 Ma)to the present,tectonic uplift has caused adjustment and loss of gas reservoirs. Faults developed within the layer are beneficial for the preservation of shale gas. The larger the scale of fault development, the less favorable it is for shale gas enrichment. The fracture system controls production capacity,with weak deformation and low fault density in the central part of the syncline,and moderate development of fractures, which is conducive to the enrichment of shale gas. However,the deformation of the structures around the syncline is strong,the fault density is high,and the fracture system is extremely developed,which is destructive to the enrichment of shale gas.

Key words: shale gas, deep-water shelf shale, self generation and self reservoir, source-reservoir configuration, tectonic-thermal evolution, fault density, brittleness index, Wufeng Formation-Longmaxi Formation, Ningxi area, Sichuan Basin

中图分类号: 

  • TE122.1
[1] 董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 34(12):1-15. DONG Dazhong, GAO Shikui, HUANG Jinliang, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12):1-15.
[2] 张烈辉, 何骁, 李小刚, 等. 四川盆地页岩气勘探开发进展、挑战及对策[J]. 天然气工业, 2021, 41(8):143-152. ZHANG Liehui, HE Xiao, LI Xiaogang, et al. Shale gas exploration and development in the Sichuan Basin:Progress, challenge and countermeasures[J]. Natural Gas Industry, 2021, 41(8):143-152.
[3] 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1):161-169. MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1):161-169.
[4] 邹才能, 杨智, 孙莎莎, 等."进源找油":论四川盆地页岩油气[J]. 中国科学:地球科学, 2020, 50(7):903-920. ZOU Caineng, YANG Zhi, SUN Shasha, et al."Exploring petroleum inside source kitchen":Shale oil and gas in Sichuan Basin[J]. Scientia Sinica(Terrae), 2020, 50(7):903-920.
[5] 姜鹏飞, 吴建发, 朱逸青, 等. 四川盆地海相页岩气富集条件及勘探开发有利区[J]. 石油学报, 2023, 44(1):91-109. JIANG Pengfei, WU Jianfa, ZHU Yiqing, et al. Enrichment conditions and favorable areas for exploration and development of marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(1):91-109.
[6] 郭旭升. 南方海相页岩气"二元富集"规律:四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7):1209-1218. GUO Xusheng. Rules of two-factor enrichiment for marine shale gas in southern China:Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geological Sinica, 2014, 88(7):1209-1218.
[7] 何治亮, 聂海宽, 张钰莹. 四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016, 23(2):8-17. HE Zhiliang, NIE Haikuan, ZHANG Yuying. The main factors of shale gas enrichment of Ordovician Wufeng FormationSilurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2):8-17.
[8] 杨平, 余谦, 牟传龙, 等. 四川盆地西南缘山地复杂构造区页岩气富集模式及勘探启示:一个页岩气新区[J]. 天然气工业, 2021, 41(5):42-54. YANG Ping, YU Qian, MOU Chuanlong, et al. Shale gas enrichment model and exploration implications in the mountainous complex structural area along the southwestern margin of the Sichuan Basin:A new shale gas area[J]. Natural Gas Industry, 2021, 41(5):42-54.
[9] 蒲泊伶, 董大忠, 管全中, 等. 川南地区龙马溪组页岩气富集高产主控因素分析[J]. 石油物探, 2022, 61(5):918-928. PU Boling, DONG Dazhong, GUAN Quanzhong, et al. Analysis of main controlling factors for the enrichment and high productivity of the Longmaxi shale gas in southern Sichuan Basin[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):918-928.
[10] 聂海宽, 李沛, 党伟, 等. 四川盆地及周缘奥陶系-志留系深层页岩气富集特征与勘探方向[J]. 石油勘探与开发, 2022, 49(4):648-659. NIE Haikuan, LI Pei, DANG Wei, et al. Enrichment characteristics and exploration directions of deep shale gas of OrdovicianSilurian in the Sichuan Basin and its surrounding areas, China[J]. Petroleum Exploration and Development, 2022, 49(4):648-659.
[11] 何贵松, 何希鹏, 高玉巧, 等.中国南方3套海相页岩气成藏条件分析[J]. 岩性油气藏, 2019, 31(1):57-68. HE Guisong, HE Xipeng, GAO Yuqiao, et al. Analysis of accumulation conditions of three sets of marine shale gas in southern China[J]. Lithologic Reservoirs, 2019, 31(1):57-68.
[12] 吴建发, 吴娟, 刘文平, 等. 页岩气成藏过程的阶段划分:以四川盆地宁西地区五峰组-龙马溪组页岩气成藏过程为例[J]. 天然气工业, 2021, 41(1):83-92. WU Jianfa, WU Juan, LIU Wenping, et al. Stage division of shale gas accumulation process:An example from the Wufeng Formation-Longmaxi Formation shale gas reservoir in the Ningxi area of the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1):83-92.
[13] 汪凯明. 川东南盆缘复杂构造区深层页岩气富集特征[J]. 天然气地球科学, 2023, 34(2):334-348. WANG Kaiming. Enrichment characteristics of deep shale gas in tectonically complex regions of the southeastern Sichuan Basin[J]. Natural Gas Geoscience, 2023, 34(2):334-348.
[14] 陈增裕, 刘睿, 谭秀成, 等. 四川盆地南缘长宁地区五峰组-龙马溪组页岩内多源石英对页岩气富集的意义[J]. 古地理学报, 2023, 25(4):1-11. CHEN Zengyu, LIU Rui, TAN Xiucheng, et al. Implications of multi-source quartz on shale gas enrichment in the WufengLongmaxi shale of Changning area in southern margin of Sichuan Basin, China[J]. Journal of Palaeogeography(Chinese Edition), 2023, 25(4):1-11.
[15] 赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J]. 天然气地球科学, 2016, 27(3):470-487. ZHAO Shengxian, YANG Yueming, ZHANG Jian, et al. Microlayers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2016, 27(3):470-487.
[16] 张成林, 杨学锋, 赵圣贤, 等. 川南自贡区块页岩储层最佳靶体优选[J]. 油气藏评价与开发, 2022, 12(3):496-505. ZHANG Chenglin, YANG Xuefeng, ZHAO Shengxian, et al. Target position optimization for shale reservoirs in Zigong block of southern Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3):496-505.
[17] 张素荣, 董大忠, 廖群山, 等. 四川盆地南部深层海相页岩气地质特征及资源前景[J]. 天然气工业, 2021, 41(9):35-45. ZHANG Surong, DONG Dazhong, LIAO Qunshan, et al. Geological characteristics and resource prospect of deep marine shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9):35-45.
[18] 罗健, 戴鸿鸣, 邵隆坎, 等. 四川盆地下古生界页岩气资源前景预测[J]. 岩性油气藏, 2012, 24(4):70-74. LUO Jian, DAI Hongming, SHAO Longkan, et al. Prospect prediction for shale gas resources of the Lower Paleozoic in Sichuan Basin[J]. Lithologic Reservoirs, 2012, 24(4):70-74.
[19] 拜文华, 王强, 孙莎莎, 等. 五峰组-龙马溪组页岩地化特征及沉积环境:以四川盆地西南缘为例[J]. 中国矿业大学学报, 2019, 48(6):1276-1289.BAI Wenhua, WANG Qiang, SUN Shasha, et al. Geochemical characteristics and sedimentary environment of the WufengLongmaxi shales:A case study from southwest margin of the Sichuan Basin[J]. Journal of China University of Mining and Technology, 2019, 48(6):1276-1289.
[20] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian) stark shale member of the Dennis limestone, Wabaunsee County, Kansas, U.S. A[. J]. Chemical Geology, 1992, 99(1):65-82.
[21] 王晔, 邱楠生, 马中良, 等. 固体沥青反射率与镜质体反射率的等效关系评价[J]. 中国矿业大学学报, 2020, 49(3):563-575. WANG Ye, QIU Nansheng, MA Zhongliang, et al. Evaluation of equivalent relationship between vitrinite reflectance and solid bitumen reflectance[J]. Journal of China University of Mining and Technology, 2020, 49(3):563-575.
[22] 李国辉, 苑保国, 朱华, 等. 四川盆地超级富气成因探讨[J]. 天然气工业, 2022, 42(5):1-10. LI Guohui, YUAN Baoguo, ZHU Hua, et al. Genesis of superrich gas in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(5):1-10.
[23] 李小佳, 邓宾, 刘树根, 等. 川南宁西地区五峰组-龙马溪组多期流体活动[J]. 岩性油气藏, 2021, 33(6):135-144. LI Xiaojia, DENG Bin, LIU Shugen, et al. Multi-stage fluid activity characteristics of Wufeng-Longmaxi Formation in Ningxi area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(6):135-144.
[24] 王茂桢, 柳少波, 任拥军, 等. 页岩气储层粘土矿物孔隙特征及其甲烷吸附作用[J]. 地质论评, 2015, 61(1):207-216. WANG Maozhen, LIU Shaobo, REN Yongjun, et al. Pore characteristics and methane adsorption of clay minerals in shale gas reservoir[J]. Geological Review, 2015, 61(1):207-216.
[25] RICKMAN R, MULLEN M J, PETRE J E, et al. A practical use of shale petrophysics for stimulation design optimization:All shale plays are not clones of the Barnett Shale[R]. Denver, Colorado:SPEAnnual Technical Conference & Exhibition, 2008.
[26] 张小龙, 张同伟, 李艳芳, 等. 页岩气勘探和开发进展综述[J]. 岩性油气藏, 2013, 25(2):116-122. ZHANG Xiaolong, ZHANG Tongwei, LI Yanfang, et al. Research advance in exploration and development of shale gas[J]. Lithologic Reservoirs, 2013, 25(2):116-122.
[27] 张成林, 赵圣贤, 张鉴, 等. 川南地区深层页岩气富集条件差异分析与启示[J]. 天然气地球科学, 2021, 32(2):248-261. ZHANG Chenglin, ZHAO Shengxian, ZHANG Jian, et al. Analysis and enlightenment of the difference of enrichment conditions for deep shale gas in southern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(2):248-261.
[28] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6):17-23. HU Dongfeng, ZHANG Hanrong, NI Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6):17-23.
[29] 聂海宽, 汪虎, 何治亮, 等. 常压页岩气形成机制、分布规律及勘探前景:以四川盆地及其周缘五峰组-龙马溪组为例[J]. 石油学报, 2019, 40(2):131-143. NIE Haikuan, WANG Hu, HE Zhiliang, et al. Formation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir:A case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2019, 40(2):131-143.
[30] HE Zhiliang, HU Zongquan, NIE Haikuan, et al. Characterization of shale gas enrichment in the Wufeng Formation-Longmaxi Formation in the Sichuan Basin of China and evaluation of its geological construction-transformation evolution sequence[J]. Journal of Natural Gas Geoscience, 2017, 2(1):1-10.
[31] 周文, 徐浩, 余谦, 等. 四川盆地及其周缘五峰组-龙马溪组与筇竹寺组页岩含气性差异及成因[J]. 岩性油气藏, 2016, 28(5):18-25. ZHOU Wen, XU Hao, YU Qian, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas[J]. Lithologic Reservoirs, 2016, 28(5):18-25.
[32] 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4):481-491. GUO Xusheng, HU Dongfeng, LI Yuping, et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44(4):481-491.
[33] 李可, 王兴志, 张馨艺, 等. 四川盆地东部下志留统龙马溪组页岩储层特征及影响因素[J]. 岩性油气藏, 2016, 28(5):52-58. LI Ke, WANG Xingzhi, ZHANG Xinyi, et al. Shale reservoir characteristics and influencing factors of the Lower Silurian Longmaxi Formation in the eastern Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(5):52-58.
[34] 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3):525-532. LONG Pengyu, ZHANG Jinchuan, TANG Xuan, et al. Feature of muddy shale fissure and its effect for shale gas exploration and development[J]. Natural Gas Geoscience, 2011, 22(3):525-532.
[35] 董敏, 郭伟, 张林炎, 等. 川南泸州地区五峰组-龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1):43-51. DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi Formation in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1):43-51.
[36] 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2):212-220. DING Wenlong, LI Chao, LI Chunyan, et al. Dominant factors of fracture development in shale and its relationship to gas accumulation[J]. Earth Science Frontiers, 2012, 19(2):212-220.
[37] HE Shun, QIN Qirong, QIN Zhangjin, et al. Natural fracture development characteristics and their relationship with gas contents:A case study of Wufeng-Longmaxi Formation in Luzhou area, southern Sichuan Basin, China[J]. ACS Omega, 2022, 38(7):34066-34079.
[38] 高健, 林良彪, 任天龙, 等. 川北地区下侏罗统东岳庙段页岩气富集主控因素研究[J]. 岩性油气藏, 2016, 28(5):67-75. GAO Jian, LIN Liangbiao, REN Tianlong, et al. Controlling factors for shale gas enrichment of the Lower Jurassic Dongyuemiao member in the northern Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(5):67-75.
[1] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[2] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[3] 邱玉超, 李亚丁, 文龙, 罗冰, 姚军, 许强, 文华国, 谭秀成. 川东地区寒武系洗象池组构造特征及成藏模式[J]. 岩性油气藏, 2024, 36(5): 122-132.
[4] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[5] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[6] 周刚, 杨岱林, 孙奕婷, 严威, 张亚, 文华国, 和源, 刘四兵. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36(5): 25-34.
[7] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[8] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[9] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[10] 杨为华. 松辽盆地双城断陷白垩系营城组四段致密油成藏主控因素及模式[J]. 岩性油气藏, 2024, 36(4): 25-34.
[11] 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145.
[12] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[13] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[14] 包汉勇, 刘皓天, 陈绵琨, 盛贤才, 秦军, 陈洁, 陈凡卓. 川东地区高陡构造带寒武系洗象池群天然气成藏条件[J]. 岩性油气藏, 2024, 36(2): 43-51.
[15] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[5] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[6] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[7] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[8] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[9] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[10] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .