岩性油气藏 ›› 2018, Vol. 30 ›› Issue (4): 26–36.doi: 10.12108/yxyqc.20180403

• 油气地质 • 上一篇    下一篇

海拉尔盆地浅变质岩潜山岩性控储特征及储层岩性序列识别

李娟1,2,3, 孙松领2, 陈广坡2, 张斌2, 洪亮2, 何巍巍2   

  1. 1. 甘肃省油气资源研究重点实验室/中国科学院 油气资源研究重点实验室, 兰州 730000;
    2. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    3. 中国科学院大学, 北京 100049
  • 收稿日期:2017-12-28 修回日期:2018-03-12 出版日期:2018-07-21 发布日期:2018-07-21
  • 作者简介:李娟(1982-),女,中国科学院大学在读博士研究生,高级工程师,研究方向为沉积与储层。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:lijuan_xb@petrochina.com.cn。
  • 基金资助:
    中国石油天然气股份有限公司科技项目“海拉尔盆地富油气断陷综合研究与有利区带价”(编号:101017kt1604003x20)资助

Controlling of epimetamorphic rock lithology on basement reservoir and identification of lithological sequence of reservoir in Hailar Basin

LI Juan1,2,3, SUN Songling2, CHEN Guangpo2, ZHANG Bin2, HONG Liang2, HE Weiwei2   

  1. 1. Key Laboratory of Petroleum Resources, Gansu Province;Key Laboratory of Petroleum Resources Research, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. PetroChina Research Institute of Petroleum Exploration & DevelopmentNorthwest, Lanzhou 730000, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-12-28 Revised:2018-03-12 Online:2018-07-21 Published:2018-07-21

摘要: 岩性识别是变质基岩储层评价的核心与难点,以海拉尔盆地贝尔凹陷布达特群浅变质基岩潜山为例,应用岩心、薄片、测井、地震资料,通过测井交会和地震相等方法,识别与建立主要岩性的测井-地震响应标准。从风化淋滤和断裂对储层的改造程度上,分析岩性对构造裂缝、溶蚀孔隙等主要储集空间发育的控制作用。通过岩性、物性、油产量的定量统计方法,建立不同级别储层与岩性序列的对应关系,应用地震频谱聚类、多属性神经网络聚类等物探技术对储层岩性序列进行平面预测。结果表明:布达特群复杂浅变质基岩发育5类9种主要岩性,它们具备不同的测井响应值与地震反射特征。不同岩性的矿物成分、含量、岩石强度、抗风化能力差异性控制储层发育程度及类型。储层岩性序列分为4类,Ⅰ类岩性序列为含火山碎屑沉积岩、正常沉积岩的中—细粒岩,为好储层,日产油大于15 t; Ⅱ类岩性序列为火山碎屑岩,为较好储层,日产油1~15 t; Ⅲ类岩性序列为沉积火山碎屑岩和正常沉积岩中的泥质岩,为中等储层,日产油小于1 t; Ⅳ类岩性序列为中基性火成岩类,为差储层,试油为干层。研究区优质储层发育区主要分布于贝15、贝38、贝32井区和塔拉汗构造带东部与中部地区。

关键词: 古构造恢复, 致密砂岩气, 油气意义, 沁水盆地

Abstract: Lithology identification is the key and base work to study metamorphic rock basement reservoirs. Taking the complex epimetamorphic rock basement of Budate Group buried hill in Beir Sag,Hailar basin as an example, the core,thin slice,well log and seismic data were used to establish the log-seismic response standards of the main lithologies through the method of well log crossplot and seismic facies analysis. The controlling effects of lithology on reservoir spaces such as structural fractures and dissolved pores were illuminated,from the aspects of different reform degree by weathering-leaching and faulting effects. According to quantitative statistics of lithologies,reservoir physical properties and oil production,the hierarchical-related correspondence of reservoir and lithological sequence was built. The geophysical methods of seismic spectrum clustering and multi-attribute neural network clustering were applied to predict the distribution of lithological sequence of reservoir. The results show that there are five main types and nine fundamental lithological rocks developed in Budate Group, which have specific well log response values and seismic reflection characteristics. The differences in mineral composition and content,weathering resistance,and rock strength for each lithology control the difference of reservoir type and quality. The lithological sequences of reservoir compose of four levels. The levelⅠis pyroclastic sedimentary rocks and normal medium-fine sedimentary rocks, which is good reservoir, with oil production more than 15 t/d,the level Ⅱ is pyroclastic rocks,which is fair reservoir,with oil production of 1-15 t/d,the level Ⅲ is sedimentary pyroclastic rocks and normal mudstone,which is medium reservoir,with oil production less than 1 t/d, and the level Ⅳ is intermediate-basic volcanic rocks, which is poor reservoir, being dry layer. The high quality reservoirs in the study area are mainly developed in the well fields of Bei 15,Bei 38 and Bei 32,and the eastern and central Talaham structural zone.

Key words: paleo-tectonic restoration, tight sandstone gas, hydrocarbon significance, Qinshui Basin

中图分类号: 

  • TE122
[1] 邹华耀, 赵春明, 尹志军.辽东湾JZS潜山变质岩风化壳识别及储集特征.天然气地球科学, 2015, 26(4):599-607. ZOU H Y, ZHAO C M, YIN Z J. Development and distribution of the metamorphite-weathering crust and its feature of reservoirproperty for the JZS buried hill, Liaodongwan area. Natural Gas Geoscience, 2015, 26(4):599-607.
[2] CUONG T X, WARREN J K. Bach Ho Field, a fractured granitic basement reservoir, Cuu Long Basin, offshore SE Vietnam:a "buried-hill"play. Journal of Petroleum Geology, 2009, 32(2):129-156.
[3] NELSON R A, MOLDOVANYI E P, MATCEK C C, et al. Production characteristics of the fractured reservoirs of the La Paz Field, Maracaibo Basin, Venezuela. AAPG Bulletin, 2000, 84(11):1791-1809.
[4] 毛治国, 崔景伟, 綦宗金, 等.风化壳储层分类、特征及油气勘探方向.岩性油气藏, 2018, 30(2):12-22. MAO Z G, CUI J W, QI Z J, et al. Classification, characteristic and petroleum exploration of weathering crust reservoir. Lithologic Reservoirs, 2018, 30(2):12-22.
[5] 童凯军, 赵春明, 吕坐彬, 等.渤海变质岩潜山油藏储集层综合评价与裂缝表征.石油勘探与开发, 2012, 39(1):56-63. TONG K J, ZHAO C M, LYU Z B, et al. Reservoir evaluation and fracture characterization of the metamorphic buried hill reservoir in Bohai Bay. Petroleum Exploration and Development, 2012, 39(1):56-63.
[6] 高长海, 查明, 赵贤正, 等.冀中坳陷潜山油气藏输导体系及成藏模式.岩性油气藏, 2015, 27(2):26-30. GAO C H, ZHA M, ZHAO X Z, et al. Migration systems and hydrocarbon accumulation models of buried hill reservoirs in Jizhong Depression. Lithologic Reservoirs, 2015, 27(2):26-30.
[7] 张晶, 李双文, 付立新, 等.黄骅坳陷孔南地区碎屑岩潜山内幕储层特征及控制因素.岩性油气藏, 2014, 26(6):50-56. ZHANG J, LI S W, FU L X, et al. Characteristics of inner buried hill clastic reservoirs and their main controlling factors in Kongnan area, Huanghua Depression. Lithologic Reservoirs, 2014, 26(6):50-56.
[8] LUO J L, MORAD S, LIANG Z G, et al. Controls on the quality of Archean metamorphic and Jurassic volcanic reservoir rocks from the Xinglongtai buried hill, western depression of Liaohe Basin, China. AAPG Bulletin, 2005, 89(10):1319-1346.
[9] 查明, 尉亚民, 高长海, 等.牛驼镇凸起南段潜山勘探潜力分析.岩性油气藏, 2011, 23(2):10-14. ZHA M, WEI Y M, GAO C H, et al. Analysis on exploration potential of buried hill in southern Niutuozhen uplift. Lithologic Reservoirs, 2011, 23(2):10-14.
[10] 张大权, 邹妞妞, 姜杨, 等.火山岩岩性测井识别方法研究——以准噶尔盆地火山岩为例. 岩性油气藏, 2015, 27(1):108-114. ZHANG D Q, ZOU N N, JIANG Y, et al. Logging identification method of volcanic rock lithology:a case study from volcanic rock in Junggar Basin. Lithologic Reservoirs, 2015, 27(1):108-114.
[11] 马峰, 阎存凤, 马达德, 等.柴达木盆地东坪地区基岩储集层气藏特征.石油勘探与开发, 2015, 42(3):266-273. MA F, YAN C F, MA D D, et al. Bedrock gas reservoirs in Dongping area of Qaidam Basin, NW China. Petroleum Exploration and Development, 2015, 42(3):266-273.
[12] SIRCAR A. Hydrocarbon production from fractured basement formations. Current Science, 2004, 87(2):147-151.
[13] ROHRMAN M. Prospectively of volcanic basins:Trap delineation and acreage de-risking. AAPG Bulletin, 2007, 91(6):915-939.
[14] SZABÓ B, SCHUBERT F, TÓTH T M, et al. Palaeofluid evolution in a fractured basalt hosted reservoir in the Üllés-RuzsaBordány area, southern sector of the Pannonian Basin. Journal of the Croatian Geological Survey and the Croatian Geological Society, 2016, 69(3):281-293.
[15] 汤小燕, 刘之的, 邹正银, 等.准噶尔盆地六九区火成岩岩性识别方法研究. 西南石油大学学报(自然科学版), 2009, 31(1):29-32. TANG X Y, LIU Z D, ZOU Z Y, et al. The identification method of igneous rock lithology in 69 area of Junggar Basin. Journal of Southwest Petroleum University(Science & Technology Edition), 2009, 31(1):29-32.
[16] 潘赟, 蒋智格, 潘懋, 等.塔北西部火成岩岩性测井识别方法. 石油天然气学报(江汉石油学院学报), 2008, 30(1):260-262. PAN Y, JIANG Z G, PAN M, et al. Method for identifying igneous lithological logging in the west of northern Tarim Basin. Journal of Oil and Gas Technology, 2008, 30(1):260-262.
[17] 张宪游. 海拉尔盆地潜山油藏测井裂缝预测. 断块油气田, 2009, 16(1):118-123. ZHANG X Y. Logging fracture prediction in the reservoir of buried-hill, Hailaer Basin. Fault-Block Oil & Gas Field, 2009, 16(1):118-123.
[18] 付晓飞, 陈哲, 闫百泉, 等.海拉尔-塔木察格盆地中部断陷带油气富集主控因素分析——断层和盖层双控模式.中国科学:D辑地球科学, 2013, 43(8):1338-1351. FU X F, CHEN Z, YAN B Q, et al. Analysis of main controlling factors for hydrocarbon accumulation in central rift zones of the Hailar-Tamtsag Basin using a fault-caprock dual control mode. Science China:Series D Earth Sciences, 2013, 43(8):1338-1351.
[19] 付广, 吴伟.乌尔逊-贝尔凹陷油气成藏模式及其主控因素. 岩性油气藏, 2015, 27(1):14-20. FU G, WU W. Oil-gas accumulation models and their main controlling factors in Wuerxun-Beier Depression. Lithologic Reservoirs, 2015, 27(1):14-20.
[20] 苏玉平, 李建, 刘亚峰, 等.贝尔凹陷布达特群潜山分类及其演化史研究.岩性油气藏, 2009, 21(4):58-62. SU Y P, LI J, LIU Y F, et al. Research on classification and evolution procession of buried hills in Budate Group in Beier Depression. Lithologic Reservoirs, 2009, 21(4):58-62.
[21] 王玉华, 张吉光, 张海军.海拉尔盆地贝尔断陷布达特群变质岩储层特征及勘探方法.大庆石油地质与开发, 2007, 26(2):23-26. WANG Y H, ZHANG J G, ZHANG H J. Reservoir characteristics and exploration method of metamorphic rock in Budate Group in Beier Rift of Hailaer Basin. Petroleum Geology & Oilfield Development in Daqing, 2007, 26(2):23-26.
[22] 毕广武.测井资料在塔木察格盆地查干组地层岩性识别中的应用.国外测井技术, 2008, 23(5):17-19. BI G W. The application of logging data in lithology identification of the Chagan formation in Tammuzag Basin. World Well Logging Technology, 2008, 23(5):17-19.
[23] 靳军, 王剑, 杨召, 等.准噶尔盆地克-百断裂带石炭系内幕储层测井岩性识别.岩性油气藏, 2018, 30(2):85-92. JIN J, WANG J, YANG Z, et al. Well logging identification of Carboniferous volcanic inner buried-hill reservoirs in Ke-Bai fractured zone in Junggar Basin. Lithologic Reservoirs, 2018, 30(2):85-92.
[24] 黄凤祥, 夏振宇, 马秀玲, 等.基于测井和地震技术变质岩潜山岩性识别与预测.断块油气田, 2016, 23(6):721-725. HUANG F X, XIA Z Y, MA X L, et al. Identification and prediction of metamorphic buried hill lithology based on logging and seismic technology. Fault-Block Oil & Gas Field, 2016, 23(6):721-725.
[25] 陆诗阔, 李冬冬.变质岩储层岩性及裂缝测井识别方法研究进展.特种油气藏, 2016, 23(4):1-6. LU S K, LI D D. Advances in logging identification of lithology and fracture in metamorphic reservoir. Special Oil and Gas Reservoir, 2016, 23(4):1-6.
[26] 邹才能, 候连华, 杨帆, 等.碎屑岩风化壳结构及油气地质意义.中国科学:D辑地球科学, 2014, 44(12):2652-2664. ZOU C N, HOU L H, YANG F, et al. Structure of weathered clastic crust and its petroleum potential. Science China:Series D Earth Sciences, 2014, 44(12):2652-2664.
[27] 林承焰, 梁昌国, 任丽华, 等.碎屑岩潜山沉积相及其与裂缝发育的关系.中国石油大学学报:自然科学版, 2008, 32(4):1-6. LIN C Y, LIANG C G, REN L H, et al. Sedimentary facies and relation to degree of fracture development of clastic buried hills. Journal of China University of Petroleum, 2008, 32(4):1-6.
[28] 王宏语, 樊太亮, 肖莹莹, 等.凝灰质成分对砂岩储集性能的影响.石油学报, 2010, 31(3):432-439. WANG H Y, FAN T L, XIAO Y Y, et al. Effect of tuffaceous components on physical property of sandstone reservoir. Acta Petrolei Sinica, 2010, 31(3):432-439.
[1] 刘桓, 苏勤, 曾华会, 孟会杰, 张小美, 雍运动. 近地表Q补偿技术在川中地区致密气勘探中的应用[J]. 岩性油气藏, 2021, 33(3): 104-112.
[2] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[3] 侯科锋, 李进步, 张吉, 王龙, 田敏. 苏里格致密砂岩气藏未动用储量评价及开发对策[J]. 岩性油气藏, 2020, 32(4): 115-125.
[4] 刘俞佐, 石万忠, 刘凯, 王任, 吴睿. 鄂尔多斯盆地杭锦旗东部地区上古生界天然气成藏模式[J]. 岩性油气藏, 2020, 32(3): 56-67.
[5] 柳娜, 周兆华, 任大忠, 南珺祥, 刘登科, 杜堃. 致密砂岩气藏可动流体分布特征及其控制因素——以苏里格气田西区盒8段与山1段为例[J]. 岩性油气藏, 2019, 31(6): 14-25.
[6] 任大忠, 周兆华, 梁睿翔, 周然, 柳娜, 南郡祥. 致密砂岩气藏黏土矿物特征及其对储层性质的影响——以鄂尔多斯盆地苏里格气田为例[J]. 岩性油气藏, 2019, 31(4): 42-53.
[7] 段治有, 李贤庆, 陈纯芳, 马立元, 罗源. 杭锦旗地区J58井区下石盒子组气水分布及其控制因素[J]. 岩性油气藏, 2019, 31(3): 45-54.
[8] 尹帅, 赵威, 范子宜. 沁水盆地南部地区古构造恢复及其油气意义[J]. 岩性油气藏, 2017, 29(6): 43-50.
[9] 陈志强, 吴思源, 白蓉, 雷刚. 基于流动单元的致密砂岩气储层渗透率测井评价——以川中广安地区须家河组为例[J]. 岩性油气藏, 2017, 29(6): 76-83.
[10] 杨特波, 王继平, 王一, 付斌, 薛雯, 郝骞. 基于地质知识库的致密砂岩气藏储层建模——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2017, 29(4): 138-145.
[11] 楚翠金, 夏志林, 杨志强. 延川南区块致密砂岩气测井识别与评价技术[J]. 岩性油气藏, 2017, 29(2): 131-138.
[12] 魏新善, 胡爱平, 赵会涛, 康锐, 石晓英, 刘晓鹏. 致密砂岩气地质认识新进展[J]. 岩性油气藏, 2017, 29(1): 11-20.
[13] 吴雅琴,邵国良,徐耀辉,王 乔,刘振兴,帅 哲. 沁水盆地郑庄区块煤层气开发地质单元划分及开发方式优化研究[J]. 岩性油气藏, 2016, 28(6): 125-133.
[14] 袁 淋,王朝明,李晓平,胡新佳,曾 力. 致密砂岩气藏气水同产水平井产能公式推导及应用[J]. 岩性油气藏, 2016, 28(3): 121-126.
[15] 王付斌,马 超,安 川. 南华北盆地通许地区上古生界天然气勘探前景[J]. 岩性油气藏, 2016, 28(2): 33-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 冯心远,王宇超,胡自多,李 斐,邵喜春. 基于叠后地震记录求取整形算子的叠前资料拼接技术[J]. 岩性油气藏, 2007, 19(3): 93 -96 .
[4] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[5] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[6] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[7] 潘建国,卫平生,张虎权,谭开俊. 地震储层学与相关学科的比较[J]. 岩性油气藏, 2010, 22(3): 1 -4 .
[8] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[9] 邢二涛,张云锋. 水平井开发技术在贝中区N1 段应用研究[J]. 岩性油气藏, 2010, 22(Z1): 93 -95 .
[10] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .