岩性油气藏 ›› 2019, Vol. 31 ›› Issue (3): 145–151.doi: 10.12108/yxyqc.20190317

• 石油工程 • 上一篇    下一篇

页岩气井压裂后焖排模式

杜洋, 雷炜, 李莉, 赵哲军, 倪杰   

  1. 中国石化西南油气分公司 石油工程技术研究院, 四川 德阳 618000
  • 收稿日期:2018-11-26 修回日期:2019-02-13 出版日期:2019-05-21 发布日期:2019-05-06
  • 第一作者:杜洋(1984-),男,硕士,助理研究员,主要从事天然气开发与排水采气研究工作。地址:(618000)四川省德阳市龙泉山北路298号石油工程技术研究院。Email:duyang1004@126.com。
  • 基金资助:
    中国石化科技部“十条龙”项目“威远—永川深层页岩气开发关键技术”(编号:P18058)资助

Shut-in and flow-back pattern of fractured shale gas wells

DU Yang, LEI Wei, LI Li, ZHAO Zhejun, NI Jie   

  1. Research Institute of Petroleum Engineering Technology, Sinopec Southwest Oil & Gas Company, Deyang 618000, Sichuan, China
  • Received:2018-11-26 Revised:2019-02-13 Online:2019-05-21 Published:2019-05-06

摘要: 页岩气井水力压裂过程中注入液量大,但压裂后返排率往往较低,滞留压裂液对储层的影响仍不清晰。针对该问题,选取永川新店子构造YY1井龙马溪组的岩心,开展压裂液渗吸实验,并对比渗吸前后岩心物性、孔隙结构特征及电子显微镜下微观结构等参数的变化规律。实验结果表明:永川新店子构造岩心压裂液渗吸后,岩心平均孔隙度增大了50%,平均渗透率增大了25%,气体吸附量减少了35%,比表面积降低了40%;岩心沿层理方向产生了新的裂缝,并随着渗吸的持续进行,裂缝发生扩展和延伸,逐步沟通裂缝网络,增大了液体的渗吸面积;通过YY1HF井的现场试验发现,焖井30 d后再控产(6万m3/d)试采,产液量大幅度降低,气井生产稳定。研究认为,压裂后焖井有利于改善储层物性,增加渗流通道,压裂后返排应由小到大逐级控制油嘴排液,以提高气井采收率。

关键词: 页岩气, 焖井, 压裂液, 渗吸, 返排率

Abstract: Horizontal well staged fracturing is the main technical mean of shale gas reservoir reformation, the large fracturing fluid was injected into the formation but the flow-back rate was relatively low. The pros and cons are still unclear about the retention fracturing fluid in the formation. In order to solve this problem, cores of Longmaxi Formation from well YY1 in Xindianzi structure of Yongchuan were selected to carry out imbibition experiment with slick-water, and the variation rules of core physical properties, pore structure characteristics and micro-structure were compared. The results show that after fracturing fluid imbibition, the average porosity and permeability increased by 50% and 25% respectively, while gas adsorption capacity and specific surface area decreased by 35% and 40% respectively. Micro fissures were created along the bedding direction after imbibition test, and with the continuous infiltration, the fissures expanded and extended, gradually communicated the fracture network, and increased the infiltration area of liquid. Through field test of well YY1 HF, it is found that after 30 days of shut-in test under the production rate of 60 000 m3/d, the production of liquid is greatly reduced, and the production of gas wells is stable. Therefore, post-frac shut-in is beneficial to improve reservoir physical properties and increase seepage channels, and gradual enlargement flow-back strategy is better for gas recovery.

Key words: shale gas, shut-in, fracture fluid, imbibition, flow-back rate

中图分类号: 

  • TE377
[1] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二).石油勘探与开发, 2016, 43(2):166-178. ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China:Characteristics, challenges and prospects(Ⅱ). Petroleum Exploration and Development, 2016, 43(2):166-178.
[2] 张小龙, 张同伟, 李艳芳, 等.页岩气勘探和开发进展综述. 岩性油气藏,2013, 25(2):116-122. ZHANG X L, ZHANG T W, LI Y F, et al. Research advance in exploration and development of shale gas. Lithologic Reservoirs, 2013, 25(2):116-122.
[3] 徐勇, 吕成福, 陈国俊, 等.川东南龙马溪组页岩孔隙分形特征. 岩性油气藏, 2015, 27(4):32-39. XU Y, LYU C F, CHEN G J, et al. Fractal characteristics of shale pores of Longmaxi Formation in southeast Sichuan Basin. Lithologic Reservoirs, 2015, 27(4):32-39.
[4] CRAFTON J W, NOE S L. Factors affecting early well productivity in six shale plays. SPE 166101, 2013.
[5] WANG D M, BUTLER R, LIU H, et al. Flow-rate behavior and imbibition in shale. SPE Reservoir Evaluation & Engineering, 2011, 14(4):485-492.
[6] 任凯, 葛洪魁, 杨柳, 等.页岩自吸实验及其在返排分析中的应用. 科学技术与工程, 2015, 15(30):106-109. REN K, GE H K, YANG L, et al. Imbibition experiment of shale and its application in flowback analysis. Science Technology and Engineering, 2015, 15(30):106-109.
[7] MAKHANOV K, DEHGHANPOUR H, KURU E. An experimental study of spontaneous imbibition in Horn River Shales. SPE 162650, 2012.
[8] DEHGHANPOUR H, LAN Q, SAEED Y, et al. Spontaneous imbibition of brine and oil in gas shales:Effect of water adsorption and resulting microfractures. Energy & Fuels, 2013, 27(6):3039-3049.
[9] ZHOU Z, ABASS H, LI X P, et al. Experimental investigation of the effect of imbibition on shale permeability during hydraulic fracturing. Journal of Natural Gas Science and Engineering, 2016, 29:413-430.
[10] 杨柳, 葛洪魁, 申颍浩.一种评价页岩储层压裂液吸收的新方法. 科学技术与工程, 2016, 16(24):48-53. YANG L, GE H K, SHEN Y H. A new method for evaluating intake of fracturing fluid in shale formations. Science Technology and Engineering, 2016, 16(24):48-53.
[11] 钱斌, 朱炬辉, 杨海, 等.页岩储集层岩心水化作用实验.石油勘探与开发, 2017, 44(4):615-621. QIAN B, ZHU J H, YANG H, et al. Experiments on shale reservoirs plugs hydration. Petroleum Exploration and Development, 2017, 44(4):615-621.
[12] SCOTT H E, PATEY I T M, BYRNE M T. Return permeability measurements-Proceed with caution. SPE 107812, 2007.
[13] 高树生, 胡志明, 郭为, 等.页岩储层吸水特征与返排能力.天然气工业, 2013, 33(12):71-76. GAO S S, HU Z M, GUO W, et al. Water absorption characteristics of gas shale and the fracturing fluid flowback capacity. Natural Gas industry, 2013, 33(12):71-76.
[14] DUTTA R, LEE C H, ODUMABO S, et al. Experimental investigation of fracturing-fluid migration caused by spontaneous imbibition in fractured low-permeability sands. SPE Reservoir Evaluation & Engineering, 2014, 17(1):74-81.
[15] YAN Q, LEMANSKI C, KARPYN Z T, et al. Experimental investigation of shale gas production impairment due to fracturing fluid migration during shut-in time. Journal of Natural Gas Science and Engineering, 2015, 24:99-105.
[16] 王跃鹏, 刘向君, 梁利喜.页岩力学特性的层理效应及脆性预测.岩性油气藏, 2018, 30(4):149-160. WANG Y P, LIU X J, LIANG L X. Influences of bedding planes on mechanical properties and prediction method of brittleness index in shale. Lithologic Reservoirs, 2018, 30(4):149-160.
[17] 孙文峰, 李玮, 董智煜, 等.页岩孔隙结构表征方法新探索.岩性油气藏, 2017, 29(2):125-130. SUN W F, LI W, DONG Z Y, et al. A new approach to the characterization of shale pore structure. Lithologic Reservoirs, 2017, 29(2):125-130.
[18] 徐祖新.基于CT扫描图像的页岩储层非均质性研究.岩性油气藏, 2014, 26(6):46-49. XU Z X. Heterogeneity of shale reservoirs based on CT images. Lithologic Reservoirs, 2014, 26(6):46-49.
[19] 余川, 周洵, 方光建, 等.地层温压条件下页岩吸附性能变化特征:以渝东北地区龙马溪组为例. 岩性油气藏, 2018, 30(6):10-17. YU C, ZHOU X, FANG G J, et al. Adsorptivity of shale under the formation temperature and pressure:a case of Longmaxi Formation in northeastern Chongqing. Lithologic Reservoirs, 2018, 30(6):10-17.
[20] 何彦庆, 郑丽, 闫长辉, 等.页岩储层标准等温吸附曲线的建立:以鄂尔多斯盆地长7页岩储层为例.岩性油气藏, 2018, 30(3):92-99. HE Y Q, ZHENG L, YAN C H, et al. Establishment of standard adsorption isotherms for shale reservoirs:a case of Chang7 shale reservoir in Ordos Basin. Lithologic Reservoirs, 2018, 30(3):92-99.
[1] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[2] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[3] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[4] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[5] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[6] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[7] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[8] 魏全超, 李小佳, 李峰, 郝景宇, 邓双林, 吴娟, 邓宾, 王道军. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70.
[9] 杨跃明, 张少敏, 金涛, 明盈, 郭蕊莹, 王兴志, 韩璐媛. 川南地区二叠系龙潭组页岩储层特征及勘探潜力[J]. 岩性油气藏, 2023, 35(1): 1-11.
[10] 闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71.
[11] 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130.
[12] 张梦琳, 李郭琴, 何嘉, 衡德. 川西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2022, 34(2): 141-151.
[13] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[14] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[15] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .