岩性油气藏 ›› 2019, Vol. 31 ›› Issue (6): 95101.doi: 10.12108/yxyqc.20190610
罗泽, 谢明英, 涂志勇, 卫喜辉, 陈一鸣
LUO Ze, XIE Mingying, TU Zhiyong, WEI Xihui, CHEN Yiming
摘要: 针对珠江口盆地X油田韩江组高泥质疏松砂岩段扩径严重引起测井曲线质量差、波阻抗属性叠置严重、储层薄且非均质性强等难题,形成的薄储层精细表征技术概括为"三步法":①遗传化神经网络技术重构能得到反映真实地层特征的弹性曲线,进而解决在疏松砂岩井段因扩径严重导致测井曲线失真的问题;②针对高泥质疏松砂岩薄储层识别难的问题,新构建DVT敏感特征参数来区分砂岩与泥岩;③利用波形指示高分辨率反演方法预测高泥质疏松薄砂岩储层的空间展布。实际应用表明:该技术在X油田注水收效、调整井优化实施和开发调整方案井网设计等方面取得了较好的应用效果,解决了该油田3~5 m薄层精确描述的难题,形成了一套完整的针对高泥质疏松砂岩薄储层预测的技术流程。该技术对同类油藏表征和油田高效开发具有参考意义。
中图分类号:
[1] 陈长民,施和生,许仕策,等.珠江口盆地(东部)第三系油气藏形成条件.北京:科学出版社,2003. CHEN C M,SHI H S,XU S C,et al. Formation conditions of Tertiary oil and gas reservoirs in the Pearl River Mouth Basin (Eastern Part). Beijing:Science Press,2003. [2] 李文红,李英蕾,雷霄,等.南海西部油田高泥质疏松砂岩储层数字岩心渗流特征.中国海上油气,2015,27(4):86-92. LI W H,LI Y L,LEI X,et al. Digital core percolation characteristics of loose sandstone reservoir with high mud content in western South China Sea. China Offshore Oil and Gas,2015,27(4):86-92. [3] 韩长城,林承焰,任丽华,等.地震波形指示反演在东营凹陷王家岗地区沙四上亚段滩坝砂的应用. 中国石油大学学报(自然科学版),2017,41(2):60-69. HAN C C,LIN C Y,REN L H,et al. Application of seismic waveform inversion in Es 4 sbeach-bar sandstone in Wangjiagang area,Dongying Depression. Journal of China University of Petroleum(Edition of Natural Sciences),2017,41(2):60-69. [4] 李雪英,李东庆,白诗缘.薄层研究方法综述.地球物理学进展,2017,29(5):2197-2203. LI X Y,LI D Q,BAI S Y. Review of thin layer studies. Progress in Geophysics,2017,29(5):2197-2203. [5] 杨占龙,肖冬生,周隶华,等.高分辨率层序格架下的陆相湖盆精细沉积体系研究:以吐哈盆地西缘侏罗系-古近系为例. 岩性油气藏,2017,29(5):1-10. YANG Z L,XIAO D S,ZHOU L H,et al. Depositional system of lacustrine basins within high-resolution sequence framework:a case of Jurassic to Paleogene in western Turpan-Kumul Basin. Lithologic Reservoirs,2017,29(5):1-10. [6] 石战战,王元君,唐湘蓉,等.一种基于时频域波形分类的储层预测方法.岩性油气藏,2018,30(4):98-104. SHI Z Z,WANG Y J,TANG X R,et al. Reservoir prediction based on seismic waveform classification in time-frequency domain. Lithologic Reservoirs,2018,30(4):98-104. [7] 杨希濮,杨小丽,刘钧,等.一体化储层精细分类方法在非均质储层定量表征中的应用.岩性油气藏,2017,29(1):124-129. YANG X P,YANG X L,LIU J,et al. Application of integrated reservoir classification method to the quantitative characterization of heterogeneity reservoir. Lithologic Reservoirs,2017,29(1):124-129. [8] 孙思敏,彭仕宓.地质统计学反演方法及其在薄层砂体预测中的应用.西安石油大学学报(自然科学版),2007,22(1):41-48. SUN S M,PENG S M. Geostatistical inversion method and its application in the prediction of thin reservoirs. Journal of Xi'an Shiyou University(Natural Science Edition),2007,22(1):41-48. [9] 盛述超,毕建军,李维,等.关于地震波形指示反演(SMI)方法的研究.内蒙古石油化工,2015,21(17):147-151. SHENG S C,BI J J,LI W,et al. Research on the method of seismic waveform indication simulation inversion(SMI). Inner Mongolia Petrochemical Industry,2015,21(17):147-151. [10] 潘光超,周家雄,韩光明,等.中深层"甜点"储层地震预测方法探讨:以珠江口盆地西部文昌A凹陷为例. 岩性油气藏, 2016,28(1):94-100. PAN G C,ZHOU J X,HAN G M,et al. Seismic prediction method of "sweet" reservoir in middle-deep zone:a case study from Wenchang A sag,western Pearl River Mouth Basin. Lithologic Reservoirs,2016,28(1):94-100. [11] 冉令.一种基于地震波形指示的反演方法研究. 中国石油大学胜利学院学报,2016,30(3):3-5. RAN L. A research on inversion method based on seismic waveform instruction. Journal of Shengli College China University of Petroleum,2016,30(3):3-5. [12] HAAS A,DUBRULE O. Geostatistical inversion:a sequential method for stochastic reservoir modeling constrained by seismic data. First Break,1994,13(12):561-569. [13] DUBRULE O,THIBAUT M,LAMY P,et al. Geostatistical reservoir characterization constrained by 3D seismic data. Petroleum Science,1998,43(4):121-128. [14] ROTHMAN D H. Geostatistical inversion of 3 D seismic data for thin-sand delineation. Geophysics,1998,51(2):332-346. [15] 杜伟维,金兆军,邸永香.地震波形指示反演及特征参数模拟在薄储层预测中的应用. 工程地球物理学报,2017,14(1):56-61. DU W W,JIN Z J,DI Y X. The application of seismic waveform indicator inversion and characteristic parameter simulation to thin reservoir prediction. Chinese Journal of Engineering Geophysics,2017,14(1):56-61. [16] 张亚斌,瞿亦斌,陈忠云.神经网络技术在测井曲线重构中的应用.石油天然气学报,2011,33(3):89-94. ZHANG Y B,QU Y B,CHEN Z Y. Application of neural network technology in reconstructing logging curves. Journal of Oil and Gas Technology,2011,33(3):89-94. [17] 刘化清,苏明军,倪长宽,等.薄砂体预测的地震沉积学研究方法.岩性油气藏,2018,30(2):1-11. LIU H Q,SU M J,NI C K,et al. Thin bed prediction from interbeded background:Revised seismic sedimentological method. Lithologic Reservoirs,2018,30(2):1-11. [18] 杨志力,周路,彭文利,等.BP神经网络技术在声波测井曲线重构中的运用. 西南石油大学学报(自然科学版),2008,30(1):63-66. YANG Z L,ZHOU L,PENG W L,et al. Application of BP neural-network technology in sonic log data rebuilding. Journal of Southwest Petroleum University(Science & Technology Edition), 2008,30(1):63-66. [19] 张永军,程超,梁涛,等.基于BP神经网络的测井曲线构建. 西部探矿工程,2006,18(2):82-85. ZHANG Y J,CHENG C,LIANG T,et al. Logging curve construction based on BP neural network. West-China Exploration Engineering,2006,18(2):82-85. [20] 杨涛,乐友喜,吴勇.波形指示反演在储层预测中的应用.地球物理学进展,2018,33(2):769-776. YANG T,YUE Y X,WU Y. Application of the waveform inversion in reservoir prediction. Progress in Geophysics,2018,33(2):769-776. [21] 梁杰,陈维涛,罗明,等.地震波形指示反演在珠江口盆地A油田薄层预测中的应用.物探化探计算技术,2019,41(3):1-7. LIANG J,CHEN W T,LUO M,et al. Application of seismic motion inversion in thin layer prediction of A oilfield in Pearl River Mouth Basin. Geophysical and Geochemical Exploration Computing Technology,2019,41(3):1-7. [22] 王贤,唐建华,毕建军,等.地震波形指示反演在石南地区薄储层预测中的应用.新疆石油天然气,2017,13(3):1-5. WANG X,TANG J H,BI J J,et al. Application of seismic waveform inversion in Shinan area. Xinjiang Oil and Gas,2017,13(3):1-5. [23] 李金磊,陈祖庆,王良军,等.相控技术在低勘探区生屑滩相储层预测中的应用.岩性油气藏,2017,29(3):110-117. LI J L,CHEN Z Q,WANG L J,et al. Application of facies-controlled technique to bioclastic shoal reservoir prediction in less well zones. Lithologic Reservoirs,2017,29(3):110-117. [24] 彭真明,张启衡,龚奇,等.波阻抗反演中的全局寻优策略.物探化探计算技术,2003,25(2):151-156. PENG Z M,ZHANG Q H,GONG Q,et al. A global optimization strategy for impedance inversion. Geophysical and Geochemical Exploration Computing Technology,2003,25(2):151-156. [25] 乔中林,杜立筠.约束稀疏脉冲波阻抗正反演参数研究.海洋地质前沿,2016,32(8):52-57. QIAO Z L,DU L J. Research on impedance forward and inversion parameters of constrained spares spike method. Marine Geology Frontier,2016,32(8):52-57. |
[1] | 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86. |
[2] | 熊波, 朱冬雪, 方朝合, 王社教, 杜广林, 薛亚斐, 莫邵元, 辛福东. 基于BP算法的中深层同轴套管换热量预测[J]. 岩性油气藏, 2024, 36(2): 15-22. |
[3] | 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169. |
[4] | 何雁兵, 肖张波, 郑仰帝, 刘君毅, 易浩, 赵庆, 张月霞, 贺勇. 珠江口盆地陆丰13洼转换带中生界陆丰7-9潜山成藏特征[J]. 岩性油气藏, 2023, 35(3): 18-28. |
[5] | 黄军立, 张伟, 刘力辉, 蔡国富, 曾有良, 孟庆友, 刘浩. 珠江口盆地番禺4洼古近系文昌组三元地震构形解释技术[J]. 岩性油气藏, 2023, 35(2): 103-112. |
[6] | 贺勇, 邱欣卫, 雷永昌, 谢世文, 肖张波, 李敏. 珠江口盆地陆丰13东洼新生代构造演化与油气成藏特征[J]. 岩性油气藏, 2023, 35(1): 74-82. |
[7] | 张卫卫, 刘军, 刘力辉, 张晓钊, 白海军, 杨登锋. 珠江口盆地番禺4洼古近系文昌组岩性预测技术及应用[J]. 岩性油气藏, 2022, 34(6): 118-125. |
[8] | 李承泽, 陈国俊, 田兵, 袁晓宇, 孙瑞, 苏龙. 珠江口盆地深层高温高压下的水岩作用[J]. 岩性油气藏, 2022, 34(4): 141-149. |
[9] | 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141. |
[10] | 张晓钊, 吴静, 彭光荣, 许新明, 郑小波. 恩平凹陷南带中新统河流-波浪联控沉积体系及其意义[J]. 岩性油气藏, 2022, 34(2): 95-104. |
[11] | 杨占伟, 姜振学, 梁志凯, 吴伟, 王军霞, 宫厚健, 李维邦, 苏展飞, 郝绵柱. 基于2种机器学习方法的页岩TOC含量评价——以川南五峰组—龙马溪组为例[J]. 岩性油气藏, 2022, 34(1): 130-138. |
[12] | 李娟, 郑茜, 孙松领, 张斌, 陈广坡, 何巍巍, 韩乾凤. 应用测井储层因子预测变质碎屑岩裂缝-孔隙型储层——以海拉尔盆地贝尔凹陷基岩为例[J]. 岩性油气藏, 2021, 33(6): 165-176. |
[13] | 马乔雨, 张欣, 张春雷, 周恒, 武中原. 基于一维卷积神经网络的横波速度预测[J]. 岩性油气藏, 2021, 33(4): 111-120. |
[14] | 赵军, 韩东, 何胜林, 汤翟, 张涛. 基于水气比计算的低对比度储层流体性质识别[J]. 岩性油气藏, 2021, 33(4): 128-136. |
[15] | 武中原, 张欣, 张春雷, 王海英. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128. |
|