岩性油气藏 ›› 2022, Vol. 34 ›› Issue (4): 89–102.doi: 10.12108/yxyqc.20220409

• 地质勘探 • 上一篇    下一篇

吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征

张记刚1, 杜猛2,3,4, 陈超1, 秦明1, 贾宁洪3,4, 吕伟峰3,4, 丁振华1, 向勇2   

  1. 1. 中国石油新疆油田分公司 勘探开发研究院, 新疆 克拉玛依 834000;
    2. 中国石油大学(北京)机械与储运工程学院, 北京 102249;
    3. 中国石油勘探开发研究院, 北京 100083;
    4. 中国石油勘探开发研究院提高采收率国家重点实验室, 北京 100083
  • 收稿日期:2021-12-10 修回日期:2022-03-15 出版日期:2022-07-01 发布日期:2022-07-07
  • 通讯作者: 向勇(1983-),男,博士,副教授,主要从事多相流腐蚀与防护方面的研究工作。Email:xiangy@cup.edu.cn。 E-mail:xiangy@cup.edu.cn
  • 作者简介:张记刚(1982-),男,硕士,高级工程师,主要从事油气田开发方面的研究工作。地址:(834000)新疆克拉玛依准噶尔路29号。Email:sxytzhjq@petrochina.com.cn
  • 基金资助:
    中石油重大开发试验专题研究项目“新疆页岩油注空气提高采收率技术研究”(编号:ks2020-01-06)和中国石油大学(北京)科研基金“复杂环境下油气储运设施腐蚀机理与防护技术研究”(编号:ZX20200128)联合资助

Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag

ZHANG Jigang1, DU Meng2,3,4, CHEN Chao1, QIN Ming1, JIA Ninghong3,4, LYU Weifeng3,4, DING Zhenhua1, XIANG Yong2   

  1. 1. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    2. College of Mechanical and Transportation Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
    3. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    4. State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
  • Received:2021-12-10 Revised:2022-03-15 Online:2022-07-01 Published:2022-07-07

摘要: 吉木萨尔凹陷二叠系芦草沟组是重要的页岩油气聚集区。通过铸体薄片、压汞及核磁共振等分析,结合医用CT、微米CT扫描技术、扫描电镜矿物定量评价(QEMSCAN)及Avizo可视化软件先进的数学算法,构建了吉木萨尔凹陷芦草沟组页岩储层的三维数字岩心并提取了孔隙网络模型参数,获取全尺度孔径分布曲线,从多个维度综合开展其微观孔隙结构定量表征研究。研究结果表明:①研究区芦草沟组页岩储层的孔隙度平均为7.6%,渗透率平均为0.37 mD,为“低孔-特低渗”型致密页岩储层,其主要储集空间类型为次生溶蚀孔,含残余粒间孔、生物体腔孔和成岩微裂缝。②孔喉尺度为纳米—微米级不等,以0.12~1.75 μm喉道贡献率最高,亚微米—微米级孔喉对渗流的贡献较大,孔隙展布形态多为孤立状和条带状,孔隙半径大多为4.5~12.5 μm;喉道半径大多为1.3~5.1 μm,喉道长度为5~15 μm;孔喉配位数为1~2,孔隙结构具有非均质性强、连通性差等特点,孔喉连通性比孔隙尺度对渗流的贡献更大。③纳米尺度下,基质矿物主要为石英和钠长石,纳米级微孔大多分布于矿物颗粒(晶体)内部有机质孔及胶结物微孔隙,孔径为0.015~5.000 μm。

关键词: 页岩油, 非均质性, 跨尺度, 数字岩心, 微观孔隙结构表征, 芦草沟组, 二叠系, 吉木萨尔凹陷

Abstract: The Permian Lucaogou Formation in Jimsar Sag is an important shale oil and gas accumulation area. Based on the analyses of cast thin sections,mercury injection and nuclear magnetic resonance,combined with medical CT,micro-CT scanning technology,quantitative evaluation of minerals by scanning electron microscope(QEMSCAN)and advanced mathematical algorithms of Avizo visualization software,a three-dimensional digital core of shale reservoirs of Lucaogou Formation in Jimsar Sag was constructed,and the pore network model parameters were extracted,and the full-scale pore size distribution curves were obtained. The comprehensively quantitative characterization of microscopic pore structure from multiple dimensions was carried out. The results show that:(1)The average porosity of the shale reservoirs of Lucaogou Formation in the study area is 7.6%, and the average permeability is 0.37 mD,which belongs to low porosity and ultra-low permeability tight shale reservoir. The main reservoir space is secondary dissolved pores,including residual intergranular pores,biological cavity pores and diagenetic microfractures.(2)The pore throat scale ranges from nanometers to micrometers. The throats within 0.12-1.75 μm have the highest contribution rate,and the submicron-micron pore throats have a greater contribution to seepage. The pores are mainly distributed in isolated and banded shape. The pore radius is mostly 4.5-12.5 μm,the throat radius is mostly 1.3-5.1 μm,and the throat length is 5-15 μm. The pore throat coordination number is mainly 1-2. The pore structure has the characteristics of strong heterogeneity and poor connectivity,and the contribution of pore connectivity to seepage is greater than that of pore scale.(3)On the nano scale,the matrix minerals are mainly quartz and albite,the main nano micropores are organic matter pores in mineral particles(crystals)and cement micropores, and the pore radius is 0.015-5.000 μm.

Key words: shale oil, heterogeneity, cross scale, digital core, microscopic pore structure characterization, Lucaogou Formation, Permian, Jimsar Sag

中图分类号: 

  • TE122
[1] 张廷山, 彭志, 杨巍, 等. 美国页岩油研究对我国的启示[J]. 岩性油气藏, 2015, 27(3):1-10. ZHANG Tingshan, PENG Zhi, YANG Wei, et al. Enlightenment of shale oil research in the United States to China[J]. Lithologic Reservoirs, 2015, 27(3):1-10.
[2] 许琳, 常秋生, 杨成克, 等. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性[J]. 石油与天然气地质, 2019, 40(3):535-549. XU Lin, CHANG Qiusheng, YANG Chengke, et al. Shale oil reservoir characteristics and oil bearing property of Permian Lucaogou Formation in Jimusar Sag[J]. Oil & Gas Geology, 2019, 40(3):535-549.
[3] 何登发, 陈新发, 况军, 等. 准噶尔盆地石炭系油气成藏组合特征及勘探前景[J]. 石油学报, 2010, 31(1):1-11. HE Dengfa, CHEN Xinfa, KUANG Jun, et al. Characteristics and exploration prospects of hydrocarbon accumulation in Carboniferous in Junggar Basin[J]. Acta Petrolei Sinica, 2010, 31(1):1-11.
[4] 刘一杉, 东晓虎, 闫林, 等. 吉木萨尔凹陷芦草沟组孔隙结构定量表征[J]. 新疆石油地质, 2019, 40(3):284-289. LIU Yishan, DONG Xiaohu, YAN Lin, et al. Quantitative characterization of pore structure of Lucaogou Formation in Jimsar Sag[J]. Xingjiang Petroleum Geology, 2019, 40(3):284-289.
[5] 李国欣, 覃建华, 鲜成钢, 等. 致密砾岩油田高效开发理论认识、关键技术与实践:以准噶尔盆地玛湖油田为例[J]. 石油勘探与开发, 2020, 47(6):1-13. LI Guoxin, QIN Jianhua, XIAN Chenggang, et al. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development:A case study of the Mahu Oilfield, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6):1-13.
[6] 吉鸿杰, 邱振, 陶辉飞, 等. 烃源岩特征与生烃动力学研究:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2014, 28(4):34-42. JI Hongjie, QIU Zhen, TAO Huifei, et al. Characteristics of source rocks and hydrocarbon generation dynamics:A case study of Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Lithologic Reservoirs, 2014, 28(4):34-42.
[7] 冷振鹏, 杨胜建, 吕伟峰, 等. 致密油孔隙结构表征方法:以川中致密油储层岩心为例[J]. 断块油气田, 2016, 23(2):161-165. LENG Zhenpeng, YANG Shengjian, LYU Weifeng, et al. Pore structure characterization for tight oil reservoirs:Taking Chuanzhong tight oil reservoir cores as examples[J]. Fault-Block Oil & Gas Field, 2016, 23(2):161-165.
[8] 贾承造, 邹才能, 杨智, 等. 陆相油气地质理论在中国中西部盆地的重大进展[J]. 石油勘探与开发, 2018, 45(4):546-560. JIA Chengzao, ZOU Caineng, YANG Zhi, et al. Significant progress of continental petroleum geology theory in basins of central and western China[J]. Petroleum Exploration and Development, 2018, 45(4):546-560.
[9] YANG Liu, ZHANG Xuhui, ZHOU Tong, et al. The effects of ion diffusion on imbibition oil recovery in salt-rich shale oil reservoirs[J]. Journal of Geophysics and Engineering, 2019, 16(3):525-540.
[10] 林森虎, 邹才能, 袁选俊, 等. 美国致密油开发现状及启示[J]. 岩性油气藏, 2011, 23(4):25-30. LIN Senhu, ZOU Caineng, YUAN Xuanjun, et al. Current situation and enlightenment of tight oil development in the United States[J]. Lithologic Reservoirs, 2011, 23(4):25-30.
[11] 黄建波, 张奎, 谢斌, 等. 准噶尔盆地玛湖凹陷百口泉组低渗透率砾岩储层分类[J]. 测井技术, 2020, 44(3):305-311. HUANG Jianbo, ZHANG Kui, XIE Bin, et al. Classification and log evaluation to low permeability conglomerate reservior of Baikouquan Formation in Mahu Depression Junggar Basin[J]. Well Logging Technology, 2020, 44(3):305-311.
[12] 刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J]. 地球物理学进展, 2017, 32(3):1019-1028. LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Study on the characteristics of pore structure of tight sand based on microCT scanning and its influence on fluid flow[J]. Progress in Geophysics, 2017, 32(3):1019-1028.
[13] 贾宁洪, 吕伟峰, 常天全, 等. 高效无损岩心孔隙度精确测量新方法[J]. 石油学报, 2018, 39(7):824-828. JIA Ninghong, LYU Weifeng, CHANG Tianquan, et al. A new method for precisely measuring core porosity with high efficiency and no destruction[J]. Acta Petrolei Sinica, 2018, 39(7):824-828.
[14] BERA B, MITRA S K, VICK D. Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography(micro-CT)and focused ion beam-scanning electron microscopy(FIB-SEM)[J]. Micron, 2010, 42(5):412-418.
[15] GOLAB A, WARD C R, PERMANA A, et al. High-resolution three-dimensional imaging of coal using microfocus X-ray computed tomography, with special reference to modes of mineral occurrence[J]. International Journal of Coal Geology, 2013, 113:97-108.
[16] 王朋飞, 姜振学, 李卓, 等. 渝东北下寒武统牛蹄塘组页岩微纳米孔隙结构特征[J]. 地球科学, 2017, 42(7):1147-1156. WANG Pengfei, JIANG Zhenxue, LI Zhuo, et al. Micro-nanopore structure characteristics in the Lower Cambrian Niutitang shale, Northest Chongqing[J]. Earth Science, 2017, 42(7):1147-1156.
[17] LYU Weifeng, CHEN Shiyu, GAO Yang, et al. Evaluating seepage radius of tight oil reservoir using digital core modeling approach[J]. Journal of Petroleum Science and Engineering, 2019, 178:609-615.
[18] 陈怡婷, 刘洛夫, 王梦尧, 等. 鄂尔多斯盆地西南部长6、长7储集层特征及其控制因素[J]. 岩性油气藏, 2020, 32(1):51-65. CHEN Yiting, LIU Luofu, WANG Mengyao, et al. Characteristics and controlling factors of Chang 6 and Chang 7 reservoirs in southwestern Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(1):51-65.
[19] 马铨峥, 杨胜来, 杨龙, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层微观孔隙特征[J]. 大庆石油地质与开发, 2020, 52(1):36-42. MA Quanzheng, YANG Shenglai, YANG Long, et al. Micro pore characteristics of Lucaogou Formation tight reservoir in Jimusaer Sag,Junggar Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 52(1):36-42.
[20] CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96(4):665-677.
[21] 张文文, 韩长城, 田继军, 等. 吉木萨尔凹陷二叠系芦草沟组层序地层划分及演化特征[J]. 岩性油气藏, 2021, 33(5):45-58. ZHANG Wenwen, HAN Changcheng, TIAN Jijun, et al. Sequence stratigraphy division and evolutionary features of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 2021, 33(5):45-58.
[22] 白斌, 朱如凯, 吴松涛, 等. 利用多尺度CT成像表征致密砂岩微观孔喉结构[J]. 石油勘探与开发, 2013, 40(3):329-333. BAI Bin, ZHU Rukai, WU Songtao, et al. Multi-scale method of nano(micro)- CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(3):329-333.
[23] 王刚, 沈俊男, 储翔宇, 等. 基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J]. 煤炭学报, 2017, 42(8):2074-2080. WANG Gang, SHEN Junnan, CHU Xiangyu, et al. Characterization and analysis of pores and fissures of high-rank coal based on CT three-dimensional reconstruction[J]. Journal of China Coal Society, 2017, 42(8):2074-2080.
[24] 刘向君, 朱洪林, 梁利喜. 基于微CT技术的砂岩数字岩石物理实验[J]. 地球物理学报, 2014, 57(4):1133-1140. LIU Xiangjun, ZHU Honglin, LIANG Lixi. Digital rock physics of sandstone based on micro-CT technology[J]. Chinese Journal of Geophysics, 2014, 57(4):1133-1140.
[25] 郝乐伟, 王琪, 唐俊. 储层岩石微观孔隙结构研究方法与理论综述[J]. 岩性油气藏, 2013, 25(5):123-128. HAO Lewei, WANG Qi,TANG Jun. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs, 2013, 25(5):123-128.
[26] 李佳琦, 陈蓓蓓, 孔明炜, 等. 页岩油储集层数字岩心重构及微尺度下渗流特征:以吉木萨尔凹陷二叠系芦草沟组页岩油为例[J]. 新疆石油地质, 2019, 40(3):319-327. LI Jiaqi, CHEN Beibei, KONG Mingwei, et al. Digital core reconstruction and research on microscale flow characteristics of shale oilreservoir:A case of the shale oil in Permian Lucaogou Formation, Jimsar Sag[J]. Xingjiang Petroleum Geology, 2019, 40(3):319-327.
[27] PENG Jun, HAN Haodong, XIA Qingsong, et al. Fractal characteristic of microscopic pore structure of tight sandstone reservoirs in Kalpintag Formation in Shuntuoguole area, Tarim Basin[J]. Petroleum Research, 2020, 5(1):1-17.
[28] 杨甫, 贺丹, 马东民, 等. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏, 2020, 32(3):14-23. YANG Fu, HE Dan, MA Dongmin, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir[J]. Lithologic Reservoirs, 2020, 32(3):14-23.
[1] 阴钰毅, 姚志纯, 郭小波, 王乐立, 陈思谦, 余小雷, 岑向阳. 鄂尔多斯盆地西缘二叠系隐伏构造特征及勘探意义[J]. 岩性油气藏, 2022, 34(4): 79-88.
[2] 白雨, 汪飞, 牛志杰, 金开来, 李沛毅, 许多年, 陈刚强. 准噶尔盆地玛湖凹陷二叠系风城组烃源岩生烃动力学特征[J]. 岩性油气藏, 2022, 34(4): 116-127.
[3] 雷海艳, 郭佩, 孟颖, 齐婧, 刘金, 张娟, 刘淼, 郑雨. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价[J]. 岩性油气藏, 2022, 34(3): 142-153.
[4] 柳忠泉, 曾治平, 田继军, 李艳丽, 李万安, 张文文, 张治恒. 吉木萨尔凹陷二叠系芦草沟组“甜点”成因与分布预测[J]. 岩性油气藏, 2022, 34(3): 15-28.
[5] 程丹华, 焦霞蓉, 王建伟, 庄东志, 王政军, 江山. 黄骅坳陷南堡凹陷古近系沙一段页岩油储层特征及油气意义[J]. 岩性油气藏, 2022, 34(3): 70-81.
[6] 肖威, 张兵, 姚永君, 王艳, 杨洪宇, 杨凯. 川东二叠系龙潭组页岩岩相特征与沉积环境[J]. 岩性油气藏, 2022, 34(2): 152-162.
[7] 赵笑笑, 闫建平, 王敏, 何贤, 钟光海, 王军, 耿斌, 胡钦红, 李志鹏. 沾化凹陷沙河街组湖相泥页岩夹层特征及测井识别方法[J]. 岩性油气藏, 2022, 34(1): 118-129.
[8] 李梦莹, 朱如凯, 胡素云. 海外陆相页岩油地质特征与资源潜力[J]. 岩性油气藏, 2022, 34(1): 163-174.
[9] 杜猛, 向勇, 贾宁洪, 吕伟峰, 张景, 张代燕. 玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J]. 岩性油气藏, 2021, 33(5): 120-131.
[10] 王静怡, 周志军, 魏华彬, 崔春雪. 基于页岩孔隙网络模型的油水两相流动模拟[J]. 岩性油气藏, 2021, 33(5): 148-154.
[11] 张文文, 韩长城, 田继军, 张治恒, 张楠, 李正强. 吉木萨尔凹陷二叠系芦草沟组层序地层划分及演化特征[J]. 岩性油气藏, 2021, 33(5): 45-58.
[12] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[13] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[14] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[15] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!