岩性油气藏 ›› 2022, Vol. 34 ›› Issue (6): 60–71.doi: 10.12108/yxyqc.20220605

• 地质勘探 • 上一篇    下一篇

川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义

闫建平1,2, 罗静超1,2, 石学文3, 钟光海3, 郑马嘉4, 黄毅5, 唐洪明1, 胡钦红6   

  1. 1. 西南石油大学 地球科学与技术学院, 成都 610500;
    2. 西南石油大学 油气藏地质及开发工程国家重点实验室, 成都 610500;
    3. 中国石油西南油气田分公司 页岩气研究院, 成都 610051;
    4. 中国石油西南油气田分公司, 成都 610051;
    5. 中国石油集团测井有限公司 西南分公司, 重庆 400021;
    6. 美国德克萨斯大学阿灵顿分校 地球与环境科学系, 美国德克萨斯州 阿灵顿 76019
  • 收稿日期:2022-05-04 修回日期:2022-06-07 出版日期:2022-11-01 发布日期:2022-11-09
  • 通讯作者: 罗静超(1998-),男,西南石油大学在读硕士研究生,研究方向为测井地质学。Email:18380306570@163.com。 E-mail:18380306570@163.com
  • 作者简介:闫建平(1980-),男,博士,教授,博士生导师,主要从事测井地质学、数字岩石物理及非常规储层测井评价等方面的教学与研究工作。地址:(610500)四川省成都市西南石油大学地球科学与技术学院。Email:yanjp_tj@163.com
  • 基金资助:
    中国石油-西南石油大学创新联合体科技合作项目“川南深层与昭通中浅层海相页岩气规模效益开发关键技术研究”(编号: 2020CX-020000)和四川省自然科学基金项目“页岩气储层低电阻率成因机制及对含气性的影响研究” (编号: 2022NSFSC0287)

Fracture development models and significance of Ordovician WufengSilurian Longmaxi shale in Luzhou area,southern Sichuan Basin

YAN Jianping1,2, LUO Jingchao1,2, SHI Xuewen3, ZHONG Guanghai3, ZHENG Majia4, HUANG Yi5, TANG Hongming1, HU Qinhong6   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    3. Shale Gas Research Institute, PetroChina Southwest Oil and Gas Field Company, Chengdu 610051, China;
    4. PetroChina Southwest Oil and Gas Field Company, Chengdu 610051, China;
    5. Southwest Branch, CNPC Logging Company Limited, Chongqing 400021, China;
    6. Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, TX 76019, USA
  • Received:2022-05-04 Revised:2022-06-07 Online:2022-11-01 Published:2022-11-09

摘要: 通过岩心、电成像测井及常规测井等资料,对川南泸州地区奥陶系五峰组—志留系龙马溪组深层页岩地层开展了电成像测井图像上的裂缝类型及组合特征、裂缝信息提取、裂缝发育模式等研究,分析了不同裂缝发育模式的声波测井响应及对后期压裂改造的影响。研究结果表明:①川南泸州地区奥陶系五峰组—志留系龙马溪组页岩随地层深度增加裂缝倾角逐渐减小、构造裂缝种类复杂程度逐渐降低,离构造活动强烈带较近的井靶体段可见明显的中、高角度构造裂缝发育。②按照构造裂缝和层理发育的关系,可将研究区裂缝发育模式分为构造裂缝与层理混合发育型、中密度层理型、紧密层理型、强构造裂缝弱层理型、大尺度构造裂缝型、致密型等6种,其中构造裂缝与层理混合发育型和中密度层理型是压裂的优选类型。③引入L曲线(σ=k/nk为常数,σ为平均开度,n为层理条数),σn值的范围能够有效表征构造裂缝和层理的相对发育程度,从而可在坐标系内对不同裂缝发育模式进行划分与识别。④不同裂缝发育模式在纵、横波时差和岩石力学性质方面具有一定差异:构造裂缝与层理混合发育型和强构造裂缝弱层理型的纵波时差小于中密度层理型和紧密层理型,中密度层理型的抗剪强度小于紧密层理型。

关键词: 深层页岩气, 裂缝发育模式, 电成像测井, 声波时差, 岩石力学, 五峰组—龙马溪组, 泸州地区, 川南

Abstract: Based on the data of cores, electrical imaging logging and conventional logging,the fracture types and combination characteristics,fracture information extraction and fracture development models of the deep shale of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Luzhou area of southern Sichuan Basin were studied on the electrical imaging logging images,and the acoustic logging response of different fracture development models and their impact on the later fracturing stimulation were analyzed. The results show that:(1)With the increase of formation depth,the fracture dip angle and the complexity of structural fracture types gradually decrease of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area,southern Sichuan Basin. The well target section near the strong tectonic activity zone shows obvious development of medium and high angle structural fractures.(2)According to the relationship between structural fractures and bedding development, the fracture development models in the study area can be divided into six types: mixed development of structural fractures and bedding, medium-density bedding,tight bedding, strong structural fractures and weak bedding,large-scale structural fractures, and dense type. Among them, the mixed development of structural fractures and bedding and the medium-density bedding are the preferred types of fracturing.(3)Curve L was introduced(σ = k/nk is a constant, σ is the average opening, n is the number of bedding), the range of k and n values can effectively characterize the relative development degree of structural fractures and bedding,so as to divide and identify different fracture development models in the coordinate system.(4)Different fracture development models have certain differences in the P-wave and S-wave time difference and rock mechanical properties. The P-wave time difference of the mixed development of structural fractures and bedding and the strong structural fracture and weak bedding is smaller than that of the medium-density bedding and the tight bedding. The shear strength of the medium-density bedding is lower than that of the tight bedding.

Key words: deep shale gas, fracture development model, electrical imaging logging, acoustic time difference, rock mechanics, Wufeng-Longmaxi Formation, Luzhou area, southern Sichuan Basin

中图分类号: 

  • TE122
[1] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1):1-14. ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14.
[2] 杜悦, 崔欢, 袁渊, 等. 天然裂缝对页岩气井产能的影响评价[J]. 天然气工业, 2021, 41(增刊1):118-123. DU Yue, CUI Huan, YUAN Yuan, et al. Influence of natural fractures on the productivity of shale gas wells[J]. Natural Gas Industry, 2021, 41(Suppl 1):118-123.
[3] 朱华, 杨光, 苑保国, 等. 四川盆地常规天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10):1475- 1485. ZHU Hua, YANG Guang, YUAN Baoguo, et al. Geological conditions, resource potential and exploration direction of conventional gas in Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(10):1475-1485.
[4] 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3):525- 532. LONG Pengyu, ZHANG Jinchuan, TANG Xuan, et al. Feature of muddy shale fissure and its effect for shale gas exploration and development[J]. Natural Gas Geoscience, 2011, 22(3):525- 532.
[5] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1):1-6. WANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1):1-6.
[6] 董敏, 郭伟, 张林炎, 等. 川南泸州地区五峰组-龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1):43-51. DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi formations in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1):43-51.
[7] 刘玉奎, 郭肖, 唐林, 等. 天然裂缝对气井产能影响研究[J]. 油气藏评价与开发, 2014, 4(6):25-28. LIU Yukui, GUO Xiao, TANG Lin, et al. Research on the influence of natural fracture on gas well productivity[J]. Reservoir Evaluation and Development, 2014, 4(6):25-28.
[8] 马军. 页岩裂缝成因及其对含气性影响:以渝东南地区阳春沟构造带五峰-龙马溪组为例[J]. 油气藏评价与开发, 2020, 10(3):126-134. MA Jun. Origin of shale fractures and its influence on gas-bearing properties:A case study of Wufeng-Longmaxi Formation in Yangchungou structural belt in southeast Chongqing[J]. Reservoir Evaluation and Development, 2020, 10(3):126-134.
[9] 王濡岳, 胡宗全, 刘敬寿, 等. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比:以黔北岑巩地区下寒武统为例[J]. 石油与天然气地质, 2018, 39(4):631-640. WANG Ruyue, HU Zongquan, LIU Jingshou, et al. Comparative analysis of characteristics and controlling factors of fractures in marine and continental shales:A case study of the Lower Cambrian in Cengong area, northern Guizhou province[J]. Oil & Gas Geology, 2018, 39(4):631-640.
[10] 卞晓冰, 侯磊, 蒋廷学, 等. 深层页岩裂缝形态影响因素[J]. 岩性油气藏, 2019, 31(6):161-168. BIAN Xiaobing, HOU Lei, JIANG Tingxue, et al. Influencing factors of fracture geometry in deep shale gas wells[J]. Lithologic Reservoirs, 2019, 31(6):161-168.
[11] 王玉满, 黄金亮, 李新景, 等.四川盆地下志留统龙马溪组页岩裂缝孔隙定量表征[J]. 天然气工业, 2015, 35(9):8-15. WANG Yuman, HUANG Jinliang, LI Xinjing, et al. Quantitative characterization of fracture and pores in shale beds of the Lower Silurian, Longmaxi Formation, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(9):8-15.
[12] 管全中, 董大忠, 张华玲, 等. 基于改进的岩石物理模型表征页岩天然裂缝特征[J]. 天然气工业, 2021, 41(2):56-64. GUAN Quanzhong, DONG Dazhong, ZHANG Hualing, et al. Characterizing the characteristics of natural fractures in shale based on the modified petrophysical model[J]. Natural Gas Industry, 2021, 41(2):56-64.
[13] 李庆辉, 李少轩, 刘伟洲. 深层页岩气储层岩石力学特性及对压裂改造的影响[J]. 特种油气藏, 2021, 28(3):130-138. LI Qinghui, LI Shaoxuan, LIU Weizhou. Rock mechanical properties of deep shale gas reservoirs and their influence on fra-cturing stimulation[J]. Special Oil & Gas Reservoirs, 2021, 28(3):130-138.
[14] 闫建平, 言语, 司马立强, 等. 泥页岩储层裂缝特征及其与"五性" 之间的关系[J]. 岩性油气藏, 2015, 27(3):87-93. YAN Jianping, YAN Yu, SIMA Liqiang, et al. Relationship between fracture characteristics and"five-property"of shale reservoir[J]. Lithologic Reservoirs, 2015, 27(3):87-93.
[15] 熊涛. 黔北凤冈地区下寒武统牛蹄塘组页岩裂缝发育特征[J]. 中国煤炭地质, 2020, 32(8):38-43. XIONG Tao. Lower Cambrian Niutitang Formation shale fissure development features in Fenggang area, northern Guizhou[J]. Coal Geology of China, 2020, 32(8):38-43.
[16] 赖富强, 夏炜旭, 龚大建, 等. 基于小波高频属性的泥页岩裂缝测井识别方法研究[J]. 地球物理学进展, 2020, 35(1):124- 131. LAI Fuqiang, XIA Weixu, GONG Dajian, et al. Logging identification method of mud shale fractures based on wavelet high frequency attribute[J]. Progress in Geophysics(in Chinese), 2020,35(1):124-131.
[17] ZHANG Shaolong, YAN Jianping, CAI Jingong, et al. Fracture characteristics and logging identification of lacustrine shale in the Jiyang Depression, Bohai Bay Basin, eastern China[J]. Marine and Petroleum Geology, 2021, 132(10):1-15.
[18] LI Yong, WANG Zhuangsen, PAN Zhejun, et al. Pore structure and its fractal dimensions of transitional shale:A cross-section from east margin of the Ordos Basin, China[J]. Fuel, 2019, 241:417-431.
[19] ZHANG Shudong,REN Xingguo,LUO Li,et al. Loggingbased identification and evaluation of karst fractures in the eastern Right Bank of the Amu Darya River, Turkmenistan[J]. Natural Gas Industry B, 2019, 6(1):58-63.
[20] 王建君, 李井亮, 李林, 等. 基于叠后地震数据的裂缝预测与建模:以太阳-大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5):122-132. WANG Jianjun, LI Jingliang, LI Lin, et al. Fracture prediction and modeling based on poststack 3D seismic data:A case study of shallow shale gas reservoir in Taiyang-Dazhai area[J]. Lithologic Reservoirs, 2020, 32(5):122-132.
[21] 商晓飞, 龙胜祥, 段太忠. 页岩气藏裂缝表征与建模技术应用现状及发展趋势[J]. 天然气地球科学, 2021, 32(2):215-232. SHANG Xiaofei, LONG Shengxiang, DUAN Taizhong. Current situation and development trend of fracture characterization and modeling techniques in shale gas reservoirs[J]. Natural Gas Geoscience, 2021, 32(2):215-232.
[22] 窦亮彬, 杨浩杰, XIAO Yingjian, 等. 页岩储层脆性评价分析及可压裂性定量评价新方法研究[J]. 地球物理学进展, 2021, 36(2):576-584. DOU Liangbin, YANG Haojie, XIAO Yingjian, et al. Probability study of formation brittleness and new quantitative evaluation of fracability for shale reservoirs[J]. Progress in Geophysics(in Chinese), 2021, 36(2):576-584.
[23] 周小金, 雍锐, 范宇, 等. 天然裂缝对页岩气水平井压裂的影响及工艺调整[J].中国石油勘探, 2020, 25(6):94-104. ZHOU Xiaojin, YONG Rui, FAN Yu, et al. Logging identification method of mud shale fractures based on wavelet high frequency attribute[J]. China Petroleum Exploration, 2020, 25(6):94-104.
[24] ZHAO Jinzhou, LI Yongming, WANG Song, et al. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir[J]. Natural Gas Industry B, 2014, 1(1):89- 95.
[25] MENG Qingfeng, HAO Fang, TIAN Jinqiang. Origins of nontectonic fractures in shale[J]. Earth-Science Reviews, 2021, 222:103825.
[26] 周彤, 王海波, 李凤霞, 等. 层理发育的页岩气储集层压裂裂缝扩展模拟[J]. 石油勘探与开发, 2020, 47(5):1039-1051. ZHOU Tong, WANG Haibo, LI Fengxia, et al. Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs[J]. Petroleum Exploration and Development, 2020, 47(5):1039-1051.
[27] 李国军, 王祥, 周嵩锴, 等. EMI成像测井在川西侏罗纪储层中的应用[J]. 断块油气田, 2004, 11(6):79-80. LI Guojun, WANG Xiang, ZHOU Songkai, et al. Application of the EMI image logging technique to the Jurassic reservoir of westSichuan[J]. Fault-Block Oil & Gas Field, 2004, 11(6):79-80.
[28] 曹宇, 张超谟, 张占松, 等. 裂缝型储层电成像测井响应三维数值模拟[J]. 岩性油气藏, 2014, 26(1):92-95. CAO Yu, ZHANG Chaomo, ZHANG Zhansong, et al. Threedimensional numerical simulation of electrical imaging logging response in fractured reservoir[J]. Lithologic Reservoirs, 2014, 26(1):92-95.
[29] 邹长春, 史謌. 一类正弦曲线的Hough变换快速检测方法[J]. 计算机工程与应用, 2002, 39(4):1-3. ZOU Changchun, SHI Ge. A fast approach to detect a kind of sinusoidal curves using hough transform[J]. Computer Engineering and Applications, 2002, 39(4):1-3.
[30] 闫建平, 蔡进功, 首祥云, 等. 成像测井图像中的裂缝信息智能拾取方法[J]. 天然气工业, 2009, 29(3):51-53. YAN Jianping, CAI Jingong, SHOU Xiangyun, et al. Intelligent picking method of the fracture information from imaging logging[J]. Natural Gas Industry, 2009, 29(3):51-53.
[1] 杨跃明, 张少敏, 金涛, 明盈, 郭蕊莹, 王兴志, 韩璐媛. 川南地区二叠系龙潭组页岩储层特征及勘探潜力[J]. 岩性油气藏, 2023, 35(1): 1-11.
[2] 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130.
[3] 张梦琳, 李郭琴, 何嘉, 衡德. 川西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2022, 34(2): 141-151.
[4] 董敏, 郭伟, 张林炎, 吴中海, 马立成, 董会, 冯兴强, 杨跃辉. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51.
[5] 杨占伟, 姜振学, 梁志凯, 吴伟, 王军霞, 宫厚健, 李维邦, 苏展飞, 郝绵柱. 基于2种机器学习方法的页岩TOC含量评价——以川南五峰组—龙马溪组为例[J]. 岩性油气藏, 2022, 34(1): 130-138.
[6] 李小佳, 邓宾, 刘树根, 吴娟, 周政, 焦堃. 川南宁西地区五峰组—龙马溪组多期流体活动[J]. 岩性油气藏, 2021, 33(6): 135-144.
[7] 张兵, 唐书恒, 郗兆栋, 蔺东林, 叶亚培. 湘西北地区五峰组—龙马溪组生物地层特征及勘探意义[J]. 岩性油气藏, 2021, 33(5): 11-21.
[8] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[9] 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146.
[10] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137.
[11] 吴伟, 邵广辉, 桂鹏飞, 张虔, 魏浩元, 李国利, 任盼亮. 基于电成像资料的裂缝有效性评价和储集层品质分类——以鸭儿峡油田白垩系为例[J]. 岩性油气藏, 2019, 31(6): 102-108.
[12] 王跃鹏, 刘向君, 梁利喜. 鄂尔多斯盆地延长组张家滩陆相页岩各向异性及能量演化特征[J]. 岩性油气藏, 2019, 31(5): 149-160.
[13] 高乔, 王兴志, 朱逸青, 赵圣贤, 张芮, 肖哲宇. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素[J]. 岩性油气藏, 2019, 31(4): 72-84.
[14] 郑珊珊, 刘洛夫, 汪洋, 罗泽华, 王曦蒙, 盛悦, 许同, 王柏寒. 川南地区五峰组—龙马溪组页岩微观孔隙结构特征及主控因素[J]. 岩性油气藏, 2019, 31(3): 55-65.
[15] 陈居凯, 朱炎铭, 崔兆帮, 张闯辉. 川南龙马溪组页岩孔隙结构综合表征及其分形特征[J]. 岩性油气藏, 2018, 30(1): 55-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .