岩性油气藏 ›› 2022, Vol. 34 ›› Issue (6): 80–91.doi: 10.12108/yxyqc.20220607

• 地质勘探 • 上一篇    

塔北地区寒武系层序地层格架与台缘带展布特征

刘永立1, 李国蓉2, 何钊2, 田家奇2, 李肖肖2   

  1. 1. 中国石化西北油田分公司, 乌鲁木齐 830011;
    2. 成都理工大学 能源学院, 成都 610059
  • 收稿日期:2022-04-08 修回日期:2022-06-11 发布日期:2022-11-09
  • 作者简介:刘永立(1982-),男,硕士,副研究员,主要从事碳酸盐岩沉积与储层方面的研究。地址:(830011)乌鲁木齐市长春南路466号。Email:liuyongli526@126.com。
  • 基金资助:
    中国石化科技部项目“塔北碳酸盐岩多类型规模储集体评价研究”(编号: P21048-1)资助

Sequence stratigraphic framework and platform margin belt distribution of Cambrian in northern Tarim Basin

LIU Yongli1, LI Guorong2, HE Zhao2, TIAN Jiaqi2, LI Xiaoxiao2   

  1. 1. Northwest Oilfield Company, Sinopec, Urumqi 830011, China;
    2. College of Energy, Chengdu University of Technology, Chengdu 610059, China
  • Received:2022-04-08 Revised:2022-06-11 Published:2022-11-09

摘要: 通过对塔里木盆地北部寒武系的层序关键界面识别、层序延续时间分析、沉积相划分、地层叠置结构分析,以三级层序为单元勾绘了其台地边缘相带的展布,明确了其有利勘探区。研究结果表明:①塔里木盆地北部寒武系可识别出10个三级层序,自下而上为SQ1—SQ10,下寒武统SQ1—SQ2时期发育缓坡沉积,为Ⅰ型层序; SQ3—SQ5时期发育缓坡型碳酸盐岩台地,均为Ⅱ型层序;中寒武统SQ6时期发育碳酸盐岩台地,为Ⅱ型层序;中上寒武统SQ7—SQ10时期发育碳酸盐岩镶边台地,SQ7和SQ9为Ⅰ型层序,SQ8和SQ10为Ⅱ型层序。②研究区SQ3层序的台地边缘相带分布范围广,在柯坪隆起—沙雅隆起一线呈近东西向展布,自沙雅隆起—顺托果勒近南北向展布; SQ4—SQ10台缘相带主要呈近南北向展布,具有较好的继承性,台地边缘不断向斜坡—盆地推进,有明显的前积特征; SQ3—SQ10时期台缘高能礁滩相带展布较宽,台缘礁滩相储层面积大。③研究区塔深2井以东呈南北向延伸的台缘相带是储层发育的有利区带,与寒武系主烃源岩具备良好的空间配置关系,为最有利的勘探区带。

关键词: 三级层序, 层序地层格架, 碳酸盐岩, 潮坪相, 礁滩相, 潟湖相, 台缘带, 寒武系, 塔北地区

Abstract: Based on the identification of key sequence boundaries,analysis of sequence duration,sedimentary facies division and analysis of stratigraphic superposition structure of Cambrian in northern Tarim Basin, the distribution of platform margin belt was sketched out with the third-order sequence as a unit, and its favorable exploration areas were defined. The results show that: (1)Ten third-order sequences were identified in the Cambrian strata in the northern Tarim Basin,and they were numbered from SQ1 to SQ10 from bottom to top. Gentle slope sediments are developed in the SQ1-SQ2 period of the Lower Cambrian, which are type Ⅰ sequences. In SQ3- SQ5 period,carbonate platforms of gentle slope are developed,which are type Ⅱ sequences. Carbonate platforms are developed in SQ6 period of Middle Cambrian,which are type Ⅱ sequences. Carbonate rimmed platforms are developed during SQ7- SQ10 period of Middle and Upper Cambrian. SQ 7 and SQ 9 are type Ⅰsequences,and SQ8 and SQ10 are type Ⅱ sequences.(2)The platform margin facies belt of SQ3 sequence in the study area shows wide spatial distribution. It is distributed along Keping uplift to Shaya uplift in near EW direction,and along Shaya uplift to Shuntuoguole uplift in near N-S direction. The platform margin facies belt of SQ4-SQ10 is distributed along N-S direction, showing good successive development characteristics, with the platform margin pushing towards the slope-basin area and displaying clear progradation pattern. High-energy reef shoal facies belt of SQ3-SQ10 is widely distributed, and the reef shoal facies reservoir area on the platform margin is large.(3)The platform margin facies belt in the study area extending in the N-S direction,located in the east of well TS2,is the most favorable zone for reservoir development. It is also the most favorable exploration area because of its good spatial relationship with Cambrian main source rocks.

Key words: third-order sequence, sequence stratigraphic framework, carbonate rock, tidal flat facies, reef shoal facies, lagoon facies, platform margin belt, Cambrian, northern Tarim Basin

中图分类号: 

  • TE122
[1] 朱如凯, 崔景伟, 毛治国, 等. 地层油气藏主要勘探进展及未来重点领域[J]. 岩性油气藏, 2021, 33(1):12-24. ZHU Rukai, CUI Jingwei, MAO Zhiguo, et al. Main exploration progress and future key fields of stratigraphic reservoirs[J]. Lithologic Reservoirs, 2021, 33(1):12-24.
[2] 刘雁婷, 傅恒, 陈骥, 等. 塔里木盆地巴楚-塔中地区寒武系层序地层特征[J]. 岩性油气藏, 2010, 22(2):48-53. LIU Yanting, FU Heng, CHEN Ji, et al. Sequence stratigraphy of Cambrian in Bachu-Tazhong area, Tarim Basin[J]. Lithologic Reservoirs, 2010, 22(2):48-53.
[3] 胡晓兰. 塔里木盆地寒武-奥陶系碳酸盐岩颗粒滩沉积特征[D]. 北京:中国地质大学(北京), 2013. HU Xiaolan. Sedimentary characteristics of the carbonate shoal from Cambrian to Ordovician in the Tarim Basin[D]. Beijing:China University of Geoscience(Beijing), 2013.
[4] 杨永剑. 塔里木盆地寒武系层序岩相古地理及生储盖特征研究[D]. 成都:成都理工大学, 2011. YANG Yongjian. The research on lithofacies paleogeography of sequence and characteristics of source-reservoir-cap assemblage of Cambrian in Tarim Basin[D]. Chengdu:Chengdu University of Technology, 2011.
[5] 于炳松, 陈建强, 林畅松. 塔里木地台北部寒武纪一奥陶纪层序地层及其与扬子地台和华北地台的对比[J]. 中国科学(D辑), 2001, 31(1):17-26. YU Bingsong, CHEN Jianqiang, LIN Changsong. CambrianOrdovician sequence stratigraphy in northern Tarim and correlation with Yangtze platform and north China platform[J]. Science in China(Series D), 2001, 31(1):17-26.
[6] 郭峰, 郭岭. 柯坪地区肖尔布拉克寒武系层序及沉积演化[J]. 地层学杂志, 2011, 35(2):164-171. GUO Feng, GUO Ling. Sequence stratigraphy and sedimentary evolution of the Cambrian system at the Xiaoerbluk section in the Keping area[J]. Journal of Stratigraphy, 2011, 35(2):164-171.
[7] 王坤, 刘伟, 黄擎宇, 等. 多资料约束下的塔里木盆地寒武系层序地层划分与对比[J]. 海相油气地质, 2016, 21(3):1-12. WANG Kun, LIU Wei, HUANG Qingyu, et al. Division and correlation of Cambrian stratigraphic sequences under multiple data constraint, Tarim Basin[J]. Marine Origin Petroleum Geology, 2016, 21(3):1-12.
[8] 王鑫. 塔里木盆地寒武-奥陶系层序地层与关键不整合面特征[D]. 北京:中国地质大学(北京), 2011. WANG Xin. Analysis of sequence stratigraphy and key unconformities of Cambrian-Ordovician in Tarim Basin[D]. Beijing:China University of Geoscience(Beijing), 2011.
[9] 王晓丽, 林畅松, 焦存礼, 等. 塔里木盆地中-上寒武统白云岩储层类型及发育模式[J]. 岩性油气藏, 2018, 30(1):63-74. WANG Xiaoli, LIN Changsong, JIAO Cunli, et al. Dolomite reservoir types and development models of Middle-Upper Cambrian in Tarim Basin[J]. Lithologic Reservoirs, 2018, 30(1):63-74.
[10] 赵燚. 塔里木盆地中西部中下寒武统层序地层学研究[D]. 北京:中国石油大学(北京), 2019. ZHAO Yan. Sequence stratigraphy of Middle and Lower Cambrian in the central and western Tarim Basin, northwest China[D]. Beijing:China University of Petroleum(Beijing), 2019.
[11] 赵宗举, 张运波, 潘懋, 等. 塔里木盆地寒武系层序地层格架[J]. 地质论评, 2010, 56(5):609-620. ZHAO Zongju, ZHANG Yunbo, PAN Mao, et al. Cambrian sequence stratigraphic framework in Tarim Basin[J]. Geological Review, 2010, 56(5):609-620.
[12] 吴兴宁, 寿建峰, 张惠良, 等. 塔里木盆地寒武系-奥陶系层序格架中生储盖组合特征与勘探意义[J]. 石油学报, 2012, 33(2):225-231. WU Xingning, SHOU Jianfeng, ZHANG Huiliang, et al. Characteristics of the petroleum system in Cambrian and Ordovician sequence frameworks of the Tarim Basin and its exploration significance[J]. Acta Petrolei Sinica, 2012, 33(2):225-231.
[13] 刘存革, 李国蓉, 罗鹏, 等. 塔里木盆地北部寒武系大型进积型台地-斜坡地震层序, 演化与控制因素[J]. 地质学报, 2016, 90(4):669-687. LIU Cunge, LI Guorong, LUO Peng, et al. Seismic sequences, evolution and control factors of large Cambrian progradational platform-slope system in the northern Tarim Basin, northwest China[J]. Acta Geologica Sinica, 2016, 90(4):669-687.
[14] 肖莹莹. 塔里木盆地寒武-奥陶系台地结构特征及其对烃源岩的制约[D]. 北京:中国地质大学(北京), 2011. XIAO Yingying. Cambrian-Ordovician carbonate platform and its restriction on source rocks in Tarim Basin[D]. Beijing:China University of Geoscience(Beijing), 2011.
[15] 卫端, 高志前, 孟苗苗, 等. 塔河地区鹰山组高精度层序划分及沉积模式[J]. 岩性油气藏, 2016, 28(6):68-77. WEI Duan, GAO Zhiqian, MENG Miaomiao, et al. High-precision sequence division and sedimentary model of Yingshan Formation in Tahe area[J]. Lithologic Reservoirs, 2016, 28(6):68-77.
[16] 高华华, 何登发, 童晓光, 等. 塔里木盆地寒武纪构造-沉积环境与原型盆地演化[J]. 现代地质, 2017, 31(1):102-118. GAO Huahua, HE Dengfa, TONG Xiaoguang, et al. Tectonicdepositional environment and proto-type basin evolution of the Cambrian in the Tarim Basin[J]. Geoscience, 2017, 31(1):102-118.
[17] 朱茂炎, 孙智新, 杨爱华, 等. 中国寒武纪岩石地层划分和对比[J]. 地层学杂志, 2021, 45(3):223-249. ZHU Maoyan, SUN Zhixin, YANG Aihua, et al. Lithostratigraphic subdivision and correlation of the Cambrian in China[J]. Journal of Stratigraphy, 2021, 45(3):223-249.
[18] 高志勇, 张水昌, 张兴阳, 等. 塔里木盆地寒武-奥陶系海相烃源岩空间展布与层序类型的关系[J]. 科学通报, 2007, 52(增刊1):70-77. GAO Zhiyong, ZHANG Shuichang, ZHANG Xingyang, et al. Relationship between spatial distribution of Cambrian Ordovician marine source rocks and sequence types in Tarim Basin[J]. Chinese Science Bulletin, 2007, 52(Suppl 1):70-77.
[19] 孙冬胜, 李双建, 李建交, 等. 塔里木与四川盆地震旦系-寒武系油气成藏条件对比与启示[J]. 地质学报, 2022, 96(1):249-264. SUN Dongsheng, LI Shuangjian, LI Jianjiao, et al. Insights from a comparison of hydrocarbon accumulation conditions of SinianCambrian between the Tarim and the Sichuan basins[J]. Acta Geologica Sinica, 2022, 96(1):249-264.
[20] 杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1 井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2):62-72. YANG Haijun, CHEN Yongquan, TIAN Jun, et al. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2):62-72.
[1] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
[2] 王亮, 苏树特, 马梓柯, 蒲静, 姚蔺芳, 刘宇, 罗洋. 川中地区寒武系沧浪铺组沉积特征[J]. 岩性油气藏, 2022, 34(6): 19-31.
[3] 李珊珊, 姜鹏飞, 刘磊, 雷程, 曾云贤, 陈仕臻, 周刚. 四川盆地高磨地区寒武系沧浪铺组碳酸盐岩颗粒滩地震响应特征及展布规律[J]. 岩性油气藏, 2022, 34(4): 22-31.
[4] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
[5] 张本健, 徐唱, 徐亮, 周刚, 丁熊. 四川盆地东北部三叠系飞三段沉积特征及油气地质意义[J]. 岩性油气藏, 2022, 34(3): 154-163.
[6] 李璐萍, 梁金同, 刘四兵, 郭艳波, 李堃宇, 和源, 金九翔. 川中地区寒武系洗象池组白云岩储层成岩作用及孔隙演化[J]. 岩性油气藏, 2022, 34(3): 39-48.
[7] 文华国, 梁金同, 周刚, 邱玉超, 刘四兵, 李堃宇, 和源, 陈浩如. 四川盆地及周缘寒武系洗象池组层序-岩相古地理演化与天然气有利勘探区带[J]. 岩性油气藏, 2022, 34(2): 1-16.
[8] 崔俊, 毛建英, 陈登钱, 施奇, 李雅楠, 夏晓敏. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53.
[9] 熊加贝, 何登发. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素[J]. 岩性油气藏, 2022, 34(1): 187-200.
[10] 田晓平, 张汶, 周连德, 沈孝秀, 郭维. 南堡凹陷二号断裂带古生界碳酸盐岩潜山岩溶模式[J]. 岩性油气藏, 2021, 33(6): 93-101.
[11] 马文辛, 欧阳诚, 廖波勇, 徐邱康, 陈仁金, 王欣, 夏慧萍, 张婷. 阿姆河盆地东部牛津阶微生物灰岩储层特征及成因[J]. 岩性油气藏, 2021, 33(5): 59-69.
[12] 叶涛, 王清斌, 代黎明, 陈容涛, 崔普媛. 台地相碳酸盐岩层序划分新方法——以渤中凹陷奥陶系为例[J]. 岩性油气藏, 2021, 33(3): 95-103.
[13] 武中原, 张欣, 张春雷, 王海英. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128.
[14] 孙亮, 李保柱, 刘凡. 基于Pollock流线追踪的油藏高效水驱管理方法[J]. 岩性油气藏, 2021, 33(3): 169-176.
[15] 黄芸, 杨德相, 李玉帮, 胡明毅, 季汉成, 樊杰, 张晓芳, 王元杰. 冀中坳陷杨税务奥陶系深潜山储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 70-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!