Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (1): 45-58.doi: 10.12108/yxyqc.20240105

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Pore structure characteristics and gas-bearing properties of shale gas reservoirs of Lower Carboniferous Dawuba Formation in southern Guizhou

YANG Bowei1,2, SHI Wanzhong1,2, ZHANG Xiaoming1,2, XU Xiaofeng1,2, LIU Yuzuo1,2, BAI Luheng1,2, YANG Yang3, CHEN Xianglin4   

  1. 1. School of Earth Resources, China University of Geosciences, Wuhan 430074, China;
    2. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China;
    3. Chengdu Research Institute of Exploration and Development, PetroChina Daqing Oilfield Company, Chengdu 610041, China;
    4. Oil and Gas Survey Center, China Geological Survey, Beijing 100029, China
  • Received:2022-11-13 Revised:2022-12-06 Online:2024-01-01 Published:2024-01-02

Abstract: The pore structure characteristics and gas-bearing properties of shales of Lower Carboniferous Dawuba Formation in southern Guizhou were studied by using field emission scanning electron microscopy, whole-rock X-ray diffraction analysis, and isothermal adsorption of N2 and CO2. The results show that:(1) Calcareous shale lithofacies and calcareous/clayey mixed shale lithofacies are developed in Lower Carboniferous Dawuba Formation in southern Guizhou, with a small amount of siliceous clay shale lithofacies developed. The shale has low organic matter abundance and high maturity.(2) The pore types of shales of Dawuba Formation in the study area include inorganic pores, organic pores and microfractures, among which inorganic pores are the dominant type. The pore size distribution of shale shows a multi-peak pattern, dominated by micropores less than 1 nm and low-value mesopores of 2.0-2.4 nm and 6.0-8.0 nm. The pore volume of the shale is mainly provided by mesopores and macropores, which control the occurrence of free gas. The specific surface area of the shale is mainly provided by micropores and mesopores, which control the occurrence of adsorbed gas.(3) The gas-bearing properties of Dawuba Formation shales in the study area are mainly controlled by pore structure and preservation conditions, and organic matters and mineral components are the main factors affecting pore structure. The organic matter content and clay mineral content have a positive effect on the development of shale pores, and the brittle mineral content inhibits the development of shale pores. The complex tectonic deformation in the study area has led to poor shale gas preservation conditions, and the preservation index can be used to qualitatively-quantitatively evaluate the preservation conditions of shale gas of Dawuba Formation and make effective classification.

Key words: shale gas reservoir, pore structure, inorganic pore, organic pore, gas-bearing properties, tectonic deformation, preservation conditions, Dawuba Formation, Lower Carboniferous, southern Guizhou

CLC Number: 

  • TE122.1
[1] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J].天然气工业, 2021, 41(1):1-14. ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14.
[2] 杜燕, 刘超, 高潮, 等. 鄂尔多斯盆地延长探区陆相页岩气勘探开发进展、挑战与展望[J].中国石油勘探, 2020, 25(2):33-42. DU Yan, LIU Chao, GAO Chao, et al. Progress, challenges and prospects of the continental shale gas exploration and development in the Yanchang exploration area of the Ordos Basin[J]. China Petroleum Exploration, 2020, 25(2):33-42.
[3] 郑逢赞, 苑坤, 单俊峰, 等. 复杂构造区页岩含气性与保存条件评价:以黔西南垭紫罗断裂带打屋坝组为例[J].中国海上油气, 2022, 34(4):109-121. ZHENG Fengzan, YUAN Kun, SHAN Junfeng, et al. Evaluation of shale gas content and preservation conditions in complex structural areas:A case study of Dawuba Formation of the Yaziluo fault zone in southwest Guizhou province[J]. China Offshore Oil and Gas, 2022, 34(4):109-121.
[4] 林拓, 苑坤, 陈相霖, 等. 贵州黔水地1井探获中国南方石炭系页岩气工业气流[J].中国地质, 2022, 49(3):995-996. LIN Tuo, YUAN Kun, CHEN Xianglin, et al. Industrial gas flow of Carboniferous shales in southern China was obtained in well Qianshuidi 1 in Guizhou Province[J]. Geology in China, 2022, 49(3):995-996.
[5] 苑坤, 王超, 覃英伦, 等. 黔南地区(黔紫页1井)发现上古生界海相页岩气[J].中国地质, 2017, 44(6):1253-1254. YUAN Kun, WANG Chao, QIN Yinglun, et al. The discovery of Carboniferous shale gas in Qianziye-1 well of Qianan(southern Guizhou)depression[J]. Geology in China, 2017, 44(6):1253-1254.
[6] 陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报, 2012, 37(3):438-444. CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3):438-444.
[7] 方新焰, 王鹏, 吴亮亮, 等. 神农架及其周缘地区五峰-龙马溪组页岩微观孔隙结构特征及其含气性评价[J]. 地球化学, 2019, 48(6):590-601. FANG Xinyan, WANG Peng, WU Liangliang, et al. Characteristics of microscopic pore distribution and gas-bearing evaluation of the Wufeng-Longmaxi Formation shale around the Shennongjia region[J]. Geochimica, 2019, 48(6):590-601.
[8] 曾维特, 丁文龙, 张金川, 等. 渝东南-黔北地区牛蹄塘组页岩微纳米级孔隙发育特征及主控因素分析[J].地学前缘, 2019, 26(3):220-235. ZENG Weite, DING Wenlong, ZHANG Jinchuan, et al. Analyses of the characteristics and main controlling factors for the micro/nanopores in Niutitang shale from China's southeastern Chongqing and northern Guizhou regions[J]. Earth Science Frontiers, 2019, 26(3):220-235.
[9] 姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J].地学前缘, 2016, 23(2):126-134. JIANG Zhenxue, TANG Xianglu, LI Zhuo, et al. The wholeaperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(2):126-134.
[10] 朱炎铭, 王阳, 陈尚斌, 等. 页岩储层孔隙结构多尺度定性-定量综合表征:以上扬子海相龙马溪组为例[J]. 地学前缘, 2016, 23(1):154-163. ZHU Yanming, WANG Yang, CHEN Shangbin, et al. Qualitative-quantitative multiscale characterization of pore structures in shale reservoirs:A Case Study of Longmaxi Formation in the Upper Yangtze area[J]. Earth Science Frontiers, 2016, 23(1):154-163.
[11] 龚小平, 唐洪明, 赵峰, 等. 四川盆地龙马溪组页岩储层孔隙结构的定量表征[J].岩性油气藏, 2016, 28(3):48-57. GONG Xiaoping, TANG Hongming, ZHAO Feng, et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(3):48-57.
[12] 郭娟, 赵迪斐, 梁孝柏, 等. 页岩纳米孔隙的结构量化表征:以川东南地区五峰组为例[J].岩性油气藏, 2020, 32(5):113-121. GUO Juan, ZHAO Difei, LIANG Xiaobo, et al. Quantitative characterization of shale nanopore structure:A case study of Wufeng Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2020, 32(5):113-121.
[13] 胡德高, 万云强, 方栋梁, 等. 四川盆地涪陵地区五峰组-龙马溪组页岩孔隙特征及演化模式[J].中国海洋大学学报(自然科学版), 2021, 51(10):80-88. HU Degao, WAN Yunqiang, FANG Dongliang, et al. Pore characteristics and evolution model of shale in Wufeng-Longmaxi formation in Sichuan Basin[J]. Periodical of Ocean University of China, 2021, 51(10):80-88.
[14] 章新文, 李吉君, 卢双舫, 等. 构造变形对页岩孔隙结构及吸附性的影响[J].特种油气藏, 2018, 25(3):32-36. ZHANG Xinwen, LI Jijun, LU Shuangfang, et al. Effects of structural deformation on shale pore structure and adsorption[J]. Special Oil & Gas Reservoirs, 2018, 25(3):32-36.
[15] 陈相霖, 苑坤, 覃英伦, 等. 贵州六盘水地区石炭系打屋坝组页岩岩相特征及其对孔隙结构的影响[J]. 海相油气地质, 2021, 26(4):335-344. CHEN Xianglin, YUAN Kun, QIN Yinglun, et al. Shale lithofacies characteristics and its influence on pore structure of the Carboniferous Dawuba Formation in Liupanshui area, Guizhou Province[J]. Marine Origin Petroleum Geology, 2021, 26(4):335-344.
[16] 王伟锋, 周维维, 徐政语. 黔南坳陷构造变形特征及稳定区块评价[J].中国矿业大学学报, 2014, 43(2):255-261. WANG Weifeng, ZHOU Weiwei, XU Zhengyu. Deformation characteristics and stability zones evaluation in the southern Guizhou depression[J]. Journal of China University of Mining & Technology, 2014, 43(2):255-261.
[17] 汪新伟, 郭彤楼, 沃玉进, 等. 垭紫罗断裂带深部构造分段特征及构造变换作用[J].石油与天然气地质, 2013, 34(2):220-228. WANG Xinwei, GUO Tonglou, WO Yujin, et al. Characteristics of deep structural segmentation and transformation of the Yaziluo fault zone[J]. Oil & Gas Geology, 2013, 34(2):220-228.
[18] 姜秉仁, 邓恩德, 杨通保, 等. 黔西地区石炭系页岩气成藏地质特征及含气性影响因素[J]. 石油实验地质, 2022, 44(4):629-638. JIANG Bingren, DENG Ende, YANG Tongbao, et al. Geological conditions and controls of gas content of Carboniferous shale gas reservoirs in western Guizhou[J]. Petroleum Geology & Experiment, 2022, 44(4):629-638.
[19] 孟凡洋, 陈科, 包书景, 等. 湘西北复杂构造区下寒武统页岩含气性及主控因素分析:以慈页1井为例[J].岩性油气藏, 2018, 30(5):29-39. MENG Fanyang, CHEN Ke, BAO Shujing, et al. Gas-bearing property and main controlling factors of Lower Cambrian shale in complex tectonic area of northwestern Hunan province:A case of well Ciye 1[J]. Lithologic Reservoirs, 2018, 30(5):29-39.
[20] 张梦琳, 李郭琴, 何嘉, 等. 川西南缘天宫堂构造奥陶系五峰组-志留系龙马溪组页岩气富集主控因素[J].岩性油气藏, 2022, 34(2):141-151. ZHANG Menglin, LI Guoqin, HE Jia, et al. Main controlling factors of Ordovician Wufeng-Silurian Longmaxi shale gas enrichment in Tiangongtang structure, southwestern margin of Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(2):141-151.
[21] 郭卫星, 唐建明, 欧阳嘉穗, 等. 四川盆地南部构造变形特征及其与页岩气保存条件的关系[J].天然气工业, 2021, 41(5):11-19. GUO Weixing, TANG Jianming, OUYANG Jiasui, et al. Characteristics of structural deformation in the southern Sichuan Basin and its relationship with the storage condition of shale gas[J]. Natural Gas Industry, 2021, 41(5):11-19.
[22] 代传固. 黔东及邻区地质构造特征及其演化[D].北京:中国地质大学(北京), 2010. DAI Chuangu. Geologic character and evolution of the east Guizhou and its adjacent region[D]. Beijing:China University of Geosciences(Bejing), 2010.
[23] 卢树藩, 陈厚国. 黔南地区麻页1井寒武系牛蹄塘组页岩特征及页岩气勘探前景[J].中国石油勘探, 2017, 22(3):81-87. LU Shufan, CHEN Houguo. Shale characteristics and shale gas exploration prospect in Cambrian Niutitang Formation in well MY-1,southern Guizhou[J]. China Petroleum Exploration, 2017, 22(3):81-87.
[24] 张江江. 黔南坳陷构造演化研究[D].东营:中国石油大学(华东), 2010. ZHANG Jiangjiang. The research of tectonic evolution in southern Guizhou depression[D]. Dongying:China University of Petroleum(East China), 2010.
[25] 中国石油天然气总公司. 沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法:SY/T 5163-2018[S]. 北京:石油工业出版社, 2019. China National Petroleum Corporation. Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction:SY/T 5163-2018[S]. Beijing:Petroleum Industry Press, 2019.
[26] HU Guang, PANG Qian, JIAO Kun, et al. Development of organic pores in the Longmaxi Formation overmature shales:Combined effects of thermal maturity and organic matter composition[J]. Marine and Petroleum Geology, 2020, 116:104314.
[27] 谷渊涛, 李晓霞, 万泉, 等. 泥页岩有机质孔隙差异特征及影响因素分析:以我国典型海相、陆相、过渡相储层为例[J].沉积学报, 2021, 39(4):794-810. GU Yuantao, LI Xiaoxia, WAN Quan, et al. On the different characteristics of organic pores in shale and their influencing factors:Taking typical marine, continental, and transitional facies reservoirs in China as examples[J]. Acta Sedimentologica Sinica, 2021, 39(4):794-810.
[28] FISHMAN N S, HACKLEY P C, LOWERS H A, et al. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom[J]. International Journal of Coal Geology, 2012, 103:32-50.
[29] QIU Zhen, LIU Bei, DONG Dazhong, et al. Silica diagenesis in the Lower Paleozoic Wufeng and Longmaxi Formations in the Sichuan Basin, South China:Implications for reservoir properties and paleoproductivity[J]. Marine and Petroleum Geology, 2020, 121:104594.
[30] 赵兰. 致密砂岩储层微裂缝发育特征及对物性的影响:以杭锦旗地区十里加汗区带为例[J].油气藏评价与开发, 2022, 12(2):285-291. ZHAO Lan. Development characteristics of microfractures in tight sandstone reservoir and its influence on physical properties:A case study of Shiligiahan zone in Hangjinqi[J]. Reservoir Evaluation and Development, 2022, 12(2):285-291.
[31] 刘俞佐, 石万忠, 刘凯, 等. 鄂尔多斯盆地杭锦旗东部地区上古生界天然气成藏模式[J].岩性油气藏, 2020, 32(3):56-67. LIU Yuzuo, SHI Wanzhong, LIU Kai, et al. Natural gas accumulation patterns of Upper Paleozoic in eastern Hangjinqi area, Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(3):56-67.
[32] 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J].地学前缘, 2012, 19(2):212-220. DING Wenlong, LI Chao, LI Chunyan, et al. Dominant factor of fracture development in shale and its relationship to gas accumulation[J]. Earth Science Frontiers, 2012, 19(2):212-220.
[33] 胡博文, 李斌, 鲁东升, 等. 页岩气储层特征及含气性主控因素:以湘西北保靖地区龙马溪组为例[J].岩性油气藏, 2017, 29(3):83-91. HU Bowen, LI Bin, LU Dongsheng, et al. Characteristics and main controlling factors of shale gas reservoirs:A case from Longmaxi Formation in Baojing area, NW Hunan province[J]. Lithologic Reservoirs, 2017, 29(3):83-91.
[34] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4):603-619.
[35] ZHANG Tongwei, ELLIS G S, RUPPEL S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry, 2012, 47:120-131.
[36] 张晓明, 石万忠, 舒志国, 等. 涪陵地区页岩含气量计算模型及应用[J].地球科学, 2017, 42(7):1157-1168. ZHANG Xiaoming, SHI Wanzhong, SHU Zhiguo, et al. Calculation model of shale gas content and its application in Fuling area[J]. Earth Science, 2017, 42(7):1157-1168.
[37] 郭怀志, 潘保芝, 张丽华, 等. 页岩吸附模型及吸附气含气量计算方法进展[J].地球物理学进展, 2016, 31(3):1080-1087. GUO Huaizhi, PAN Baozhi, ZHANG Lihua, et al. Progress in adsorption model and calculation method of absorbed gas content of shale[J]. Progress in Geophysics, 2016, 31(3):1080-1087.
[38] AMBROSE R J, HARTMAN R C, DIAZ-CAMPOS M, et al. Shale gas-in-place calculations Part I:New pore-scale considerations[J]. SPE Journal, 2012, 17(1):219-229.
[39] 王进, 包汉勇, 陆亚秋, 等. 涪陵焦石坝地区页岩气赋存特征定量表征及其主控因素[J].地球科学, 2019, 44(3):1001-1011. WANG Jin, BAO Hanyong, LU Yaqiu, et al. Quantitative characterization and main controlling factors of shale gas occurrence in Jiaoshiba area, Fuling[J]. Earth Science, 2019, 44(3):1001-1011.
[40] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J].吉林大学学报(地球科学版), 2018, 48(3):678-692. FENG Xiaolong, AO Weihua, TANG Xuan. Characteristics of pore development and its main controlling factors of continental shale gas reservoirs:A case study of Chang 7 member in Ordos Basin[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3):678-692.
[41] 王幸蒙. 富有机质页岩孔隙形成演化及其对含气性的控制[D].北京:中国石油大学(北京), 2020. WANG Xingmeng. Formation and evolution of pores in organicrich shale and its controlling on shale gas content[D]. Beijing:China University of Petroleum(Bejing), 2020.
[42] XU Xiaofeng, SHI Wanzhong, ZHAI Gangyao, et al. A novel approach of evaluating favorable areas for shale gas exploration based on regional geological survey and remote sensing data[J]. Journal of Natural Gas Science and Engineering, 2021, 88:103813.
[43] 丛奇, 陈君青, 卢贵武, 等. 利用分子动力学模拟研究页岩吸附能力的影响因素及微观机理的综述[J].中南大学学报(自然科学版), 2022, 53(9):3474-3489. CONG Qi, CHEN Junqing, LU Guiwu, et al. Review on influencing factors and microscopic mechanism of shale adsorption capacity by molecular dynamics simulation[J]. Journal of Central South University(Science and Technology), 2022, 53(9):3474-3489.
[44] 张吉振, 李贤庆, 邹晓艳, 等. 海陆过渡相煤系页岩孔隙结构特征及其对含气性的影响[J]. 地球化学, 2021, 50(5):478-491. ZHANG Jizhen, LI Xianqing, ZOU Xiaoyan, et al. Pore structure characteristics of a marine-continental coal-bearing shale reservoir and its effect on the shale gas-containing property[J]. Geochimica, 2021, 50(5):478-491.
[1] KONG Lingfeng, XU Jiafang, LIU Ding. Pore structure characteristics and dehydration evolution of lignite reservoirs of Jurassic Xishanyao Formation in Santanghu Basin [J]. Lithologic Reservoirs, 2024, 36(5): 15-24.
[2] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[3] ZHU Biao, ZOU Niuniu, ZHANG Daquan, DU Wei, CHEN Yi. Characteristics of shale pore structure and its oil and gas geological significance of Lower Cambrian Niutitang Formation in Fenggang area,northern Guizhou [J]. Lithologic Reservoirs, 2024, 36(4): 147-158.
[4] CHENG Jing, YAN Jianping, SONG Dongjiang, LIAO Maojie, GUO Wei, DING Minghai, LUO Guangdong, LIU Yanmei. Low resistivity response characteristics and main controlling factors of shale gas reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Changning area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 31-39.
[5] LI Qihui, REN Dazhong, NING Bo, SUN Zhen, LI Tian, WAN Cixuan, YANG Fu, ZHANG Shiming. Micro-pore structure characteristics of coal seams of Jurassic Yan’an Formation in Shenmu area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 76-88.
[6] YAO Xiutian, WANG Chao, YAN Sen, WANG Mingpeng, LI Wan. Reservoir sensitivity of Neogene Guantao Formation in Zhanhua Sag, Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(2): 159-168.
[7] XIAO Ling, CHEN Xi, LEI Ning, YI Tao, GUO Wenjie. Characteristics and main controlling factors of shale oil reservoirs of Triassic Chang 7 member in Heshui area, Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(2): 80-93.
[8] WEN Zhigang, LUO Yushu, LIU Jiangyan, ZHAO Chunyu, LI Shixiang, TIAN Weichao, FAN Yunpeng, GAO Heting. Pore structure characteristics and genetic mechanism of Triassic Chang 7 shale oil reservoir in Longdong area [J]. Lithologic Reservoirs, 2022, 34(6): 47-59.
[9] ZHANG Fengqi, LI Yinong, LUO Julan, REN Xiaofeng, ZHANG Lanxin, ZHANG Jieyu. Microscopic pore structure characteristics of shale of Ordovician Wulalike Formation in western Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(5): 50-62.
[10] ZHANG Jigang, DU Meng, CHEN Chao, QIN Ming, JIA Ninghong, LYU Weifeng, DING Zhenhua, XIANG Yong. Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2022, 34(4): 89-102.
[11] LEI Haiyan, GUO Pei, MENG Ying, QI Jing, LIU Jin, ZHANG Juan, LIU Miao, ZHENG Yu. Pore structure and classification evaluation of shale oil reservoirs of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2022, 34(3): 142-153.
[12] CHENG Danhua, JIAO Xiarong, WANG Jianwei, ZHUANG Dongzhi, WANG Zhengjun, JIANG Shan. Shale oil reservoir characteristics and significance of the first member of Paleogene Shahejie Formation in Nanpu Sag,Huanghua Depression [J]. Lithologic Reservoirs, 2022, 34(3): 70-81.
[13] CUI Jun, MAO Jianying, CHEN Dengqian, SHI Qi, LI Yanan, XIA Xiaomin. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(2): 45-53.
[14] HE Xian, YAN Jianping, WANG Min, WANG Jun, GENG Bin, LI Zhipeng, ZHONG Guanghai, ZHANG Ruixiang. Relationship between pore structure and oil production capacity of low permeability sandstone: A case study of block F154 in south slope of Dongying Sag [J]. Lithologic Reservoirs, 2022, 34(1): 106-117.
[15] DU Meng, XIANG Yong, JIA Ninghong, LYU Weifeng, ZHANG Jing, ZHANG Daiyan. Pore structure characteristics of tight glutenite reservoirs of Baikouquan Formation in Mahu Sag [J]. Lithologic Reservoirs, 2021, 33(5): 120-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: