岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 45–54.doi: 10.12108/yxyqc.20180606

• 油气地质 • 上一篇    下一篇

柴达木盆地英西地区E32裂缝成因与油气地质意义

李翔1, 王建功1, 张平1, 李琳1, 黄成刚1,2, 伍坤宇3, 张庆辉3, 龙伟3   

  1. 1. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    2. 中国石油天然气集团公司 油藏描述重点实验室, 兰州 730020;
    3. 中国石油青海油田分公司 勘探开发研究院, 甘肃 敦煌 736200
  • 收稿日期:2018-03-01 修回日期:2018-06-19 出版日期:2018-11-16 发布日期:2018-11-16
  • 作者简介:李翔(1990-),男,硕士,工程师,主要从事储层综合预测方面的研究工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:lixiang1990@petrochina.com.cn.com。
  • 基金资助:
    国家重大科技专项“柴达木盆地复杂构造区油气成藏、关键勘探技术与新领域目标优选”(编号:2016ZX05003G006)和中国石油股份有限公司重大科技专项“柴达木盆地建设高原大油气田勘探开发关键技术研究与应用”(编号:2011E-05)联合资助

Fracture genesis mechanism and geological significance of E32 in Yingxi area, Qaidam Basin

LI Xiang1, WANG Jiangong1, ZHANG Ping1, LI Lin1, HUANG Chenggang1,2, WU Kunyu3, ZHANG Qinghui3, LONG Wei3   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development-Northwest, Lanzhou 730020, China;
    2. Key Laboratory of Reservoir Description, CNPC, Lanzhou 730020, China;
    3. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736200, Gansu, China
  • Received:2018-03-01 Revised:2018-06-19 Online:2018-11-16 Published:2018-11-16

摘要: 近年来,柴达木盆地英西地区下干柴沟组上段(E32)低孔超低渗油气藏勘探连续取得突破,勘探证实区内裂缝系统与油气富集高产存在联系,因此明确其裂缝成因机制,具有重要的油气地质意义。以岩石学特征、物性、自源超压与裂缝的匹配关系为基础,结合不同成因机制的裂缝与油气产能的关系,同时综合构造、盐岩以及岩石物理实验,提出英西地区异常高压油气藏的预测方法。研究结果表明:①多期复杂构造运动形成了大量构造缝,但多被硬石膏充填;②下部相对优质的烃源岩在生-排烃过程中产生异常高压而破裂,并在上部稳定岩盐盖层作用下得以保存,形成大量对油气运移起输导作用的有效缝;③基于有效缝成因机制与模式,可通过地震属性、岩盐厚度以及异常高压分布,结合古地貌特征,准确预测英西地区油气高产富集区的分布。该研究成果对于区内致密碳酸盐岩油气勘探具有指导意义。

关键词: 异常高压, 水力破裂缝, 三轴应力实验, 叠后振幅方位分解, 下干柴沟组, 柴达木盆地

Abstract: In recent years, a continuous breakthrough of low porosity and ultra-low permeability hydrocarbon reservoir exploration of the upper member of the Xiaganchaigou Formation (E32)in Yingxi area of Qaidam Basin has been made. The exploration works identified that enrichment and high yield of oil & gas were related to the fracture system in this area. Therefore, it is of great geological significance to clarify the fracture genesis mechanism. Based on the matching relationship among petrological characteristics, physical properties, self-source overpressure and fractures, and combined with the relationship between different fractures and oil & gas yield, tectonic and salt rock simulation experiment, rock physics experiment, the prediction method of abnormal high-pressure reservoir in Yingxi area was proposed. The results show that: (1)The complex multi-period tectonic movement formed a large number of structural fractures, but most of them were filled with anhydrite. (2)Good hydrocarbon source rocks buried in deeper part of this stratum were fractured by overpressure that formed during the hydrocarbon generation and expulsion processes. At the same time, the overpressure and fractures were preserved by stable salt seal layer developed in the upper part of the stratum, leading to form a giant number of effective fractures that acted as oil & gas migration pathways. (3)Based on the genesis mechanism and model of effective fracture, seismic attributes, salt rock thickness, overpressure distribution law and palaeogeomorphologic features, the distribution of oil & gas enrichment and high yield areas could be predicted accurately. This study acted an important guiding significance for the oil and gas exploration of tight carbonate reservoirs in this area.

Key words: abnormal high pressure, hydraulic fracture, triaxial stress test, poststack amplitude azimuth decomposition, Xiaganchaigou Formation, Qaidam Basin

中图分类号: 

  • TE122
[1] 黄成刚, 袁剑英, 曹正林, 等.咸化湖盆储层中咸水流体与岩石矿物相互作用实验模拟研究. 矿物岩石地球化学通报, 2015, 34(2):343-348. HUANG C G, YUAN J Y, CAO Z L, et al. Simulate experiment study about the saline fluid-rock interaction in the clastic reservoir of the saline lacustrine basin. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2):343-348.
[2] 付锁堂, 马达德, 郭召杰, 等.柴达木走滑叠合盆地及其控油气作用.石油勘探与开发, 2015, 42(6):712-722. FU S T, MA D D, GUO Z J, et al. Strike-slip superimposed Qaidam Basin and its control on oil and gas accumulation, NW China. Petroleum Exploration and Development, 2015, 42(6):712-722.
[3] YUAN J Y, HUANG C G, ZHAO F, et al. Carbon and oxygen isotopic compositions,and palaeoenvironmental significance of saline lacustrine dolomite from the Qaidam Basin, western China. Journal of Petroleum Science and Engineering, 2015, 135(11):596-607.
[4] 袁剑英, 黄成刚, 曹正林, 等.咸化湖盆白云岩碳氧同位素特征及古环境意义:以柴西地区渐新统下干柴沟组为例.地球化学, 2015, 44(3):254-266. YUAN J Y, HUANG C G, CAO Z L, et al. Carbon and oxygen isotopic composition of saline lacustrine dolomite and palaeoenvironmental significance:a case study of the lower Eocene Ganchaigou Formation in western Qaidam Basin. Geochemistry, 2015, 44(3):254-266.
[5] 袁剑英, 黄成刚, 夏青松, 等.咸化湖盆碳酸盐岩储层特征及孔隙形成机理——以柴西地区始新统下干柴沟组为例. 地质论评, 2016, 62(1):111-126. YUAN J Y, HUANG C G, XIA Q S, et al. The characteristics of carbonate reservoir, and formation mechanism of pores in the saline lacustrine basin:a case study of the lower Eocene Ganchaigou Formation in western Qaidam Basin. Geological review, 2016, 62(1):111-126.
[6] 黄成刚, 袁剑英, 田光荣, 等.柴西地区始新统湖相白云岩储层地球化学特征及形成机理.地学前缘, 2016, 23(3):230-242. HUANG C G, YUAN J Y, TIAN G R, et al. The geochemical characteristics and formation mechanism of the Eocene lacustrine dolomite reservoirs in the western Qaidam. Earth Science Frontiers, 2016, 23(3):230-242.
[7] 黄成刚, 常海燕, 崔俊, 等.柴达木盆地西部地区渐新世沉积特征与油气成藏模式.石油学报, 2017, 38(11):1230-1243. HUANG C G, CHANG H Y, CUI J, et al. Oligocene sedimentary characteristics and hydrocarbon accumulation model in the Western Qaidam Basin. Acta Petrolei Sinica, 2017, 38(11):1230-1243.
[8] 田继先, 曾旭, 易士威, 等.咸化湖盆致密油储层"甜点"预测方法研究:以柴达木盆地扎哈泉地区上干柴沟组为例.地学前缘, 2016, 23(5):193-201. TIAN J X, ZENG X, YI S W, et al. The prediction method of the tight oil reservoirs "sweet spot" in saline lacustrine basin:a case study of the upper Ganchaigou Formation in the Zhahaquan district of Qaidam Basin. Earth Science Frontiers, 2016, 23(5):193-201.
[9] LI L L, WU C D, FAN C F, et al. Carbon and oxygen isotopic constraints on paleoclimate and paleoelevation of the southwestern Qaidam Basin, northern Tibetan Plateau. Geoscience Frontiers, 2017(5):1175-1186.
[10] WANG H Y, FAN T L, FAN X S. Principles of trap development and characteristics of hydrocarbon accumulation in a simple slope area of a lacustrine basin margin:an example from the northern section of the western slope of the Songliao Basin, China. Journal of Earth Science, 2016, 27(6):1027-1037.
[11] 黄成刚, 袁剑英, 曹正林, 等.咸化湖盆中酸性流体对碎屑岩储层的改造作用.地球科学与环境学报, 2014, 36(3):52-60. HUANG C G, YUAN J Y, CAO Z L, et al. Reconstruction of acid fluid on clastic reservoir in saline lacustrine basin. Journal of Earth Sciences and Environment, 2014, 36(3):52-60.
[12] HUANG C G, ZHAO F, YUAN J Y, et al. Acid fluids reconstruction clastic reservoir experiment in Qaidam saline lacustrine Basin, China. Carbonates Evaporites, 2015, 30(3):21-31.
[13] HUANG C G, ZHAO F, YUAN J Y, et al. The characteristics of dolomite reservoir in saline lacustrine basin, Qaidam, China. Carbonates Evaporites, 2015, 30(8):308-316.
[14] 付锁堂, 张道伟, 薛建勤, 等.柴达木盆地致密油形成的地质条件及勘探潜力分析. 沉积学报, 2013, 31(4):672-682. FU S T, ZHANG D W, XUE J Q, et al. Exploration potential and geological conditions of tight oil in the Qaidam Basin. Acta Sedimentologica Sinica, 2013, 31(4):672-682.
[15] 黄成刚, 王建功, 吴丽荣, 等.古近系湖相碳酸盐岩储集特征与含油性分析——以柴达木盆地英西地区为例.中国矿业大学学报, 2017, 46(5):1102-1115. HUANG C G, WANG J G, WU L R, et al. Characteristics of Paleogene lacustrine carbonate reservoirs and oil-bearing property analysis:a case study of the Yingxi area of Western Qaidam Basin. Journal of China University of Mining & Technology, 2017, 46(5):1102-1115.
[16] 肖安成, 杨树锋, 李曰俊, 等.塔里木盆地巴楚隆起断裂系统主要形成时代的新认识.地质科学, 2015, 40(2):292-298. XIAO A C, YANG S F, LI Y J, et al. Main period for creation of fracture system in the Bachu uplift, Tarim Basin. Chinese Journal of Geology, 2015, 40(2):292-298.
[17] 楼谦谦, 肖安成, 钟南翀, 等.大型陆相坳陷型沉积盆地原型恢复方法——以新生代柴达木盆地为例.岩石学报, 2016, 32(3):892-902. LOU Q Q, XIAO A C, ZHONG N C, et al. A method of prototype restoration of large depressions with terrestrial sediments:a case study from the Cenozoic Qaidam Basin. Acta Petrologica Sinica, 2016, 32(3):892-902.
[18] 吴磊, 巩庆霖, 覃素华.阿尔金断裂新生代大规模走滑起始时间的厘定.岩石学报, 2013, 29(8):2837-2850. WU L, GONG Q L, QIN S H. When did Cenozoic left-slip along the Altyn Tagh Fault initiate? A comprehensive approach. Acta Petrologica Sinica, 2013, 29(8):2837-2850.
[19] WANG Y D, ZHENG J J, ZHANG W L, et al. Cenozoic uplift of the Tibetan Plateau:evidence from the tectonic-sedimentary evolution of the western Qaidam Basin. Geoscience Frontiers, 2012, 3(2):175-187.
[20] LIU D L, FANG X M, GAO J P, et al. Cenozoic stratigraphy deformation history in the central and Eastern of Qaidam Basin by the balance section restoration and its implication. Acta Geologica Sinica, 2009, 83(2):359-371.
[21] 袁剑英, 付锁堂, 曹正林, 等.柴达木盆地高原复合油气系统多源生烃和复式成藏.岩性油气藏, 2011, 23(3):7-14. YUAN J Y, FU S T, CAO Z L, et al. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin. Lithologic Reservoirs, 2011, 23(3):7-14.
[22] 吴根耀, 梁江平, 杨建国, 等. "盆""山" 耦合在异常高压盆地流体研究中的应用. 石油实验地质, 2012, 34(3):223-233. WU G Y, LIANG J P, YANG J G, et al. Application of basinorogeny coupling in study of abnormally high pressured basin fluids. Petroleum Geology & Experiment, 2012, 34(3):223-233.
[23] 吴根耀, 朱德丰, 梁江平, 等.塔里木盆地异常高压气藏的主要地质特征和成藏模式.石油实验地质, 2013, 35(4):351-363. WU G Y, ZHU D F, LIANG J P, et al. Main geological features and accumulation models of abnormally high-pressured gas reservoirs in Tarim Basin. Petroleum geology & experiment, 2013, 35(4):351-363.
[24] MAGARA K. Compaction and fluid migration practical petroleum geology. Amsterdam:Elsevier, 1978.
[25] 柳广弟.石油地质学.4版.北京:石油工业出版社, 2009:177-182. LIU G D. Petroleum Geology. 4th ed. Beijing:Petroleum Industry Press, 2009:177-182.
[26] 李海, 汤达祯, 许浩, 等. 柴达木盆地狮子沟油田古近系异常高压成因.大庆石油地质与开发, 2013, 32(3):29-34. LI H, TANG D Z, XU H, et al. Genesis of Paleogene abnormal high pressure of Shizigou oilfield in Qaidam Basin. Petroleum Geology and Oilfield Development in Daqing, 2013, 32(3):29-34.
[27] 郭泽清, 钟建华, 刘卫红, 等.柴达木盆地西部第三系异常高压与油气成藏. 石油学报, 2004, 25(4):13-18. GUO Z Q, ZHONG J H, LIU W H, et al. Relationship between abnormal overpressure and reservoir formation in the Tertiary of the Western Qaidam Basin. Acta Petrolei Sinica, 2004, 25(4):13-18.
[28] 郭泽清, 刘卫红, 钟建华, 等.柴达木盆地西部新生界异常高压:分布、成因及对油气运移的控制作用.地质科学, 2005, 40(3):376-389. GUO Z Q, LIU W H, ZHONG J H, et al. Overpressure in the Cenozoic of western of Qaidam Basin:Distribution, generation and effect on oil-gas migration. Chinese Journal of Geology, 2005, 40(3):376-389.
[29] 张小莉, 冯乔, 李文厚.压实盆地自然水力破裂及其动力学. 石油与天然气地质, 1998, 19(2):116-123. ZHANG X L, FENG Q, LI W H. Natural hydraulic fracture in compacted basin and its kinetics. Oil & Gas Geology, 1998, 19(2):116-123.
[30] SIBSON R H. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics, 1992, 211:283-293.
[31] 卞德智, 赵伦, 陈烨菲, 等.异常高压碳酸盐岩储集层裂缝特征及形成机制——以哈萨克斯坦肯基亚克油田为例.石油勘探与开发, 2011, 38(4):394-399. BIAN D Z, ZHAO L, CHEN Y F, et al. Fracture characteristics and genetic mechanism of overpressure carbonate reservoirs:Taking the Kenjiyak Oilfield in Kazakhstan as an example. Petroleum Exploration and Development, 2011, 38(4):394-399.
[32] 刘得光. 准噶尔盆地马桥凸起异常高压成因及油气成藏模式.石油勘探与开发, 1998, 25(1):21-24. LIU D G. Over pressure origin and hydrocarbon pool forming mode of Maqiao uplift in Junggar Basin. Petroleum Exploration and Development, 1998, 25(1):21-24.
[33] 马锋, 刘立, 钟建华, 等.大港滩海区沙一段下部水力破裂特征模拟实验.石油学报, 2006, 27(6):60-64. MA F, LIU L, ZHONG J H, et al. Modeling on characteristics of hydraulic fracturing in the lower first member of Shahejie Formation in Dagang beach. Acta Petrolei Sinica, 2006, 27(6):60-64.
[34] 卓勤功, 赵孟军, 李勇, 等.膏盐岩盖层封闭性动态演化特征与油气成藏——以库车前陆盆地冲断带为例. 石油学报, 2014, 35(5):847-856. ZHUO Q G, ZHAO M J, LI Y, et al. Dynamic sealing evolution and hydrocarbon accumulation of evaporite cap rocks:an example from Kuqa foreland basin thrust belt. Acta Petrolei Sinica, 2014, 35(5):847-856.
[1] 李翔, 王建功, 李飞, 王玉林, 伍坤宇, 李亚锋, 李显明. 柴达木盆地西部始新统湖相微生物岩沉积特征——以西岔沟和梁东地区下干柴沟组为例[J]. 岩性油气藏, 2021, 33(3): 63-73.
[2] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[3] 龙国徽, 王艳清, 朱超, 夏志远, 赵健, 唐鹏程, 房永生, 李海鹏, 张娜, 刘健. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏, 2021, 33(1): 145-160.
[4] 田光荣, 王建功, 孙秀建, 李红哲, 杨魏, 白亚东, 裴明利, 周飞, 司丹. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144.
[5] 孔红喜, 王远飞, 周飞, 朱军, 陈阳阳, 宋德康. 鄂博梁构造带油气成藏条件分析及勘探启示[J]. 岩性油气藏, 2021, 33(1): 175-185.
[6] 田继先, 赵健, 张静, 孔骅, 房永生, 曾旭, 沙威, 王牧. 柴达木盆地英雄岭地区硫化氢形成机理及分布预测[J]. 岩性油气藏, 2020, 32(5): 84-92.
[7] 张道伟, 薛建勤, 伍坤宇, 陈晓冬, 王牧, 张庆辉, 郭宁. 柴达木盆地英西地区页岩油储层特征及有利区优选[J]. 岩性油气藏, 2020, 32(4): 1-11.
[8] 陈更新, 王建功, 杜斌山, 刘应如, 李艳丽, 杨会洁, 李志明, 俞晓峰. 柴达木盆地尖北地区裂缝性基岩气藏储层特征[J]. 岩性油气藏, 2020, 32(4): 36-47.
[9] 易定红, 王建功, 石兰亭, 王鹏, 陈娟, 孙松领, 石亚军, 司丹. 柴达木盆地英西地区E32碳酸盐岩沉积演化特征[J]. 岩性油气藏, 2019, 31(2): 46-55.
[10] 王建功, 张道伟, 易定红, 袁剑英, 石亚军, 马新民, 高妍芳, 张平, 王鹏. 柴西地区下干柴沟组上段湖相碳酸盐岩沉积特征及相模式[J]. 岩性油气藏, 2018, 30(4): 1-13.
[11] 常海燕, 严耀祖, 陈更新, 郭宁, 项燚伟, 杨会洁. 近岸水下扇储层构型及剩余油分布模式——以柴达木盆地七个泉油田E31油藏为例[J]. 岩性油气藏, 2018, 30(3): 143-152.
[12] 李延丽, 王建功, 石亚军, 张平, 徐丽. 柴达木盆地西部盐湖相有效烃源岩测井识别[J]. 岩性油气藏, 2017, 29(6): 69-75.
[13] 王永生, 胡杰, 张静, 王传武, 朱波, 吴永国. 宽频勘探技术在柴北缘深层侏罗系勘探中的应用[J]. 岩性油气藏, 2017, 29(6): 101-107.
[14] 吴志雄,王 波,赵 健,邹开真,周 飞,熊 坤. 阿尔金山前东段牛东地区侏罗系成岩作用及其对储层物性的影响[J]. 岩性油气藏, 2016, 28(1): 58-64.
[15] 陈更新,刘应如,郭 宁,王爱萍,常海燕,张婷静 . 铸体薄片的分形表征—— 以柴达木盆地昆北新区为例[J]. 岩性油气藏, 2016, 28(1): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .