岩性油气藏 ›› 2019, Vol. 31 ›› Issue (3): 135–144.doi: 10.12108/yxyqc.20190316

• 油气田开发 • 上一篇    下一篇

下寺湾油田长7油层组页岩气储层敏感性实验

薛丹1, 张遂安1, 吴新民2, 李旭航2, 杜军军1, 卢晨刚1   

  1. 1. 中国石油大学(北京)石油工程学院, 北京 102249;
    2. 西安石油大学 石油工程学院, 西安 710065
  • 收稿日期:2018-08-15 修回日期:2018-12-27 出版日期:2019-05-21 发布日期:2019-05-06
  • 作者简介:薛丹(1994-),女,中国石油大学(北京)在读硕士研究生,研究方向为页岩气储层伤害机理。地址:(102249)北京市昌平区府学路18号中国石油大学(北京)。Email:1254587856@qq.com。
  • 基金资助:
    国家重大科技专项“大型油气田及煤层气开发”(编号:2016ZX05066003-004)资助

Sensitivity experiment of shale gas reservoir of Chang 7 reservoir in Xiasiwan oilfield

XUE Dan1, ZHANG Sui'an1, WU Xinmin2, LI Xuhang2, DU Junjun1, LU Chengang1   

  1. 1. College of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
    2. College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China
  • Received:2018-08-15 Revised:2018-12-27 Online:2019-05-21 Published:2019-05-06

摘要: 由于延长组长7油层组页岩气储层微裂缝页理发育,且基质型页岩与裂缝型页岩并存,所以在开发过程中储层易受到伤害。敏感性评价实验是研究储层伤害的重要手段之一,但这一实验目前主要针对基质型页岩进行研究。考虑到页岩储层往往需要进行压裂才能生产,且基质型页岩与裂缝型页岩的伤害机理有所不同,所以将裂缝型页岩的岩心流动实验和基质型页岩的压力脉冲衰减法实验相结合,来研究长7油层组页岩气储层的敏感性伤害机理。结果表明:该页岩储层具有强应力敏感、中等强度碱敏、中等偏弱水敏和中等偏弱速敏等特征。对比发现:在除应力敏感性评价实验外的其他各项实验中,裂缝型页岩的伤害程度均高于基质型页岩,主要是由于裂缝的存在使外来流体与地层的作用面积增大,从而造成更大的伤害;在应力敏感性评价实验中,基质型页岩应力敏感性强于微裂缝型页岩,但略低于裂缝型页岩。该研究成果可为页岩气的高效开发提供依据。

关键词: 页岩气, 敏感性, 储层伤害, 裂缝型页岩, 基质型页岩

Abstract: There are many microcracks and lamellations developed in Chang 7 shale gas reservoir, and matrix shale and fractured shale coexist, so the reservoirs are easily damaged during the development process. Sensitivity evaluation experiment is one of the important means to explore reservoir damage, however, the current experiment mainly focuses on the matrix shale. Considering that shale reservoirs often need fracturing before the shale gas can be produced, and the damage mechanism of matrix shale is different from that of fractured shale, the core flow experiment of fractured shale and the pressure pulse attenuation experiment of matrix shale were combined to study the sensitive damage mechanism of Chang 7 shale gas reservoir. The results show that the shale reservoir has the characteristics of strong stress sensitivity, medium alkali sensitivity, moderately weak water sensitivity, and moderately weak velocity sensitivity. It is found that the damage degree of fractured shale is higher than that of matrix shale in all kinds of experiments except stress sensitivity evaluation experiment. The main reason is that the presence of fractures increases the area of interaction between external fluid and formation, thus causing greater damage. Overall, the stress sensitivity of matrix shale is stronger than that of micro-fractured shale, but slightly lower than that of fractured shale. The research results can provide a basis for efficient development of shale gas.

Key words: shale gas, sensitivity, reservoir damage, fractured shale, matrix shale

中图分类号: 

  • TE258
[1] 谭淋耘. 中国页岩气资源类型及展布特征//重庆市科学技术协会、重庆市石油与天然气学会、西南石油大学新能源研究中心.第二届全国特殊气藏开发技术研讨会优秀论文集.重庆, 2013:98-101. TAN L Y. Shale gas resources types and distribution characteristics in China//Chongqing Association for Science and Technology, Chongqing Society of Oil and Gas, New Energy Research Center of Southwest Petroleum University. The 2nd National Special Gas Reservoir Development Technical Symposium Proceedings. Chongqing, 2013:98-101.
[2] 卢占国, 李强, 李建兵, 等.页岩储层伤害机理研究进展.断块油气田, 2012, 19(5):629-633. LU Z G, LI Q, LI J B, et al. Advance in mechanism study of shale formation damage. Fault-Block Oil and Gas Field, 2012, 19(5):629-633.
[3] 王冕冕, 郭肖, 曹鹏, 等.影响页岩气开发因素及勘探开发技术展望.特种油气藏, 2010, 17(6):12-17. WANG M M, GUO X, CAO P, et al. Influence factors on shale gas development and prospect of its exploration and development technology. Special Oil & Gas Reservoirs, 2010, 17(6):12-17.
[4] BOWKER K A. Barnett shale gas production, Fort Worth Basin:Issues and discussion. AAPG Bulletin, 2007, 9(14):523-533.
[5] SONDERGELD C H, NEWSHAM K E, COMISKY J T, et al. Petrophysical considerations in evaluating and producing shale gas resource. SPE 131768, 2010.
[6] 张小龙, 张同伟, 李艳芳, 等.页岩气勘探和开发进展综述.岩性油气藏, 2013, 25(2):116-122. ZHANG X L, ZHANG T W, LI Y F, et al. Research advance in exploration and development of shale gas. Lithologic Reservoirs, 2013, 25(2):116-122.
[7] 胡博文, 李斌, 鲁东升, 等.页岩气储层特征及含气性主控因素:以湘西北保靖地区龙马溪组为例.岩性油气藏, 2017, 29(3):83-91. HU B W, LI B, LU D S, et al. Characteristics and main controlling factors of shale gas reservoirs:a case from Longmaxi Formation in Baojing area, NW Hunan province. Lithologic Reservoirs, 2017, 29(3):83-91.
[8] 王香增, 张金川, 曹金舟, 等.陆相页岩气资源评价初探:以延长直罗-下寺湾区中生界长7段为例.地学前缘, 2012, 19(2):192-197. WANG X Z, ZHANG J C, CAO J Z, et al. A preliminary discussion on evaluation of continental shale gas resources:a case study of Chang 7 of Mesozoic Yanchang Formation in ZhiluoXiasiwan area of Yanchang. Earth Science Frontiers, 2012, 19(2):192-197.
[9] 冯光俊, 朱炎铭, 王阳, 等.鄂尔多斯盆地延长组页岩气储层优选.特种油气藏, 2015, 22(5):60-64. FENG G J, ZHU Y M, WANG Y, et al. Shale gas reservoir optimization of Yanchang Formation in Ordos Basin. Special Oil & Gas Reservoirs, 2015, 22(5):60-64.
[10] 杨华, 窦伟坦, 刘显阳, 等.鄂尔多斯盆地三叠系延长组长7沉积相分析.沉积学报, 2010, 28(2):254-263. YANG H, DOU W T, LIU X Y, et al. Analysis on sedimentary facies of Chang 7 in Triassic Yanchang Formation in Ordos Basin. Acta Sedimentologica Sinica, 2010, 28(2):254-263.
[11] 王香增, 范柏江, 张丽霞, 等.陆相页岩气的储集空间特征及赋存过程:以鄂尔多斯盆地陕北斜坡构造带延长探区延长组长7段为例.石油与天然气地质, 2015, 36(4):651-659. WANG X Z, FAN B J, ZHANG L X, et al. Reservoir space characteristics and charging process of Lacustrine shale gas:a case study of the Chang 7 member in Yanchang block in Shanbei slope of Ordos Basin. Oil & Gas Geology, 2015, 36(4):651-659.
[12] 张烨毓, 周文, 唐瑜, 等.鄂尔多斯盆地三叠系长7油层组页岩储层特征.成都理工大学学报(自然科学版), 2013, 40(6):671-676. ZHANG Y Y, ZHOU W, TANG Y, et al. Characteristics of shale reservoir rocks in Member 7 of Triassic Yanchang Formation in Ordos Basin,China. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(6):671-676.
[13] 徐勇, 胡士骏, 陈国俊, 等.鄂尔多斯盆地东南部延长组长7段页岩孔隙特征与吸附能力.岩性油气藏, 2016, 28(6):30-35. XU Y, HU S J, CHEN G J, et al. Pore characteristics and adsorption capacity of Chang 7 shale of Yanchang Formation in the southeastern Ordos Basin. Lithologic Reservoirs, 2016, 28(6):30-35.
[14] LUFFEL D L, GUIDRY F K. New core analysis methods for measuring reservoir rock properties of Devonian Shale. Journal of Petroleum Technology, 1992, 44(11):1184-1190.
[15] CUI X, BUSTIN A M M, BUSTIN R M. Measurements of gas permeability and diffusivity of tight reservoir rocks:Different approaches and their applications. Geofluids, 2009, 9(3):208-223.
[16] 邵东波, 陈建文.鄂尔多斯盆地致密砂岩储层敏感性特征及其控制因素:以新安边地区延长组长6储层为例.西安石油大学学报(自然科学版), 2017, 32(3):55-60. SHAO D B, CHEN J W. Sensitivity of tight sandstone reservoir in Ordos Basin and its controlling factor:Taking the Chang 6 reservoir of Yanchang Formation in Xin'anbian area as example. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(3):55-60.
[17] 徐辉, 田荣斌, 李珊, 等.张家垛阜三段储层敏感性和油水相渗特征.油气藏评价与开发, 2011, 1(6):48-51. XU H, TIAN R B, LI S, et al. Reservoir sensitivity and oil-water relative permeability of the third member of Funing Formation in Zhangjiaduo. Reservoir Evaluation and Development, 2011, 1(6):48-51.
[18] 王玉霞, 周立发, 焦尊生, 等. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价. 吉林大学学报(地球科学版), 2018, 48(4):44-53. WANG Y X, ZHOU L F, JIAO Z S, et al. Sensitivity evaluation of tight sandstone reservoir in Yanchang Formation in Shanbei area, Ordos Basin. Journal of Jilin University(Earth Science Edition), 2018, 48(4):44-53.
[19] 曾伟, 向海洋, 陈舒, 等.气测速敏中气体滑脱效应的校正.钻采工艺, 2009, 32(4):46-48. ZENG W, XIANG H Y, CHEN S, et al. Correcting gas slippage effect in gas speed sensitivity experiment. Drilling & Production Technology, 2009, 32(4):46-48.
[20] 刘学刚, 王娟, 李永胜, 等.神木-双山地区盒8致密气藏储层敏感性实验研究.石油化工应用, 2014, 33(8):48-52. LIU X G, WANG J, LI Y S, et al. Sensitivity experiment study of the He-8 tight gas reservoir of Shenmu-Shuangshan region. Petrochemical Industry Application, 2014, 33(8):48-52.
[21] 吴春燕, 沈英, 程玉群, 等.下寺湾地区延长组长7陆相页岩气储层敏感性实验.地质科技情报, 2015, 34(5):81-85. WU C Y, SHEN Y, CHENG Y Q, et al. Chang 7 continental facies shale gas reservoir sensitivity test in Yanchang Formation of Xiasi Bay area. Geological Science and Technology Information, 2015, 34(5):81-85.
[22] 石小虎, 安文宏, 王少飞, 等. 鄂尔多斯盆地东部上古生界储层敏感性实验研究. 石油化工应用, 2013, 32(1):25-30. SHI X H, AN W H, WANG S F, et al. Sensitivity experiment study of upper paleozoic reservoir in east-northern Ordos Basin. Petrochemical Industry Application, 2013, 32(1):25-30.
[23] 国家能源局. SY/T 5358-2010储层敏感性流动实验评价方法.北京:石油工业出版社, 2010. National Energy Administration Formation. SY/T 5358-2010 Damage evaluation by flow test. Beijing:Petroleum Industry Press, 2010.
[24] 杨满平, 李治平, 王正茂, 等.变形介质气藏渗流理论研究的发展及研究意义.西南石油大学学报(自然科学版), 2003, 25(6):23-26. YANG M P, LI Z P, WANG Z M, et al. The development and significance of study on fluid flowing in the deformation media gas reservoir. Journal of Southwest Petroleum Institute(Science & Technology Edition), 2003, 25(6):23-26.
[25] 何金钢, 康毅力, 游利军, 等.矿物成分和微结构对泥质岩储层应力敏感性的影响. 天然气地球科学, 2012, 23(1):129-134. HE J G, KANG Y L, YOU L J, et al. Effects of mineral composition and microstructure on stress sensitivity of mud rocks. Natural Gas Geoscience, 2012, 23(1):129-134.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[3] 孔垂显, 巴忠臣, 崔志松, 华美瑞, 刘月田, 马晶. 火山岩油藏压裂水平井应力敏感产能模型[J]. 岩性油气藏, 2021, 33(4): 166-175.
[4] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[5] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[6] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[7] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[8] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
[9] 王登, 余江浩, 赵雪松, 陈威, 黄佳琪, 徐聪. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景[J]. 岩性油气藏, 2020, 32(1): 27-35.
[10] 周瑞, 苏玉亮, 马兵, 张琪, 王文东. 随机分形体积压裂水平井CO2吞吐模拟[J]. 岩性油气藏, 2020, 32(1): 161-168.
[11] 王跃鹏, 刘向君, 梁利喜. 鄂尔多斯盆地延长组张家滩陆相页岩各向异性及能量演化特征[J]. 岩性油气藏, 2019, 31(5): 149-160.
[12] 陈相霖, 郭天旭, 石砥石, 侯啓东, 王超. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5): 52-60.
[13] 姜瑞忠, 张福蕾, 崔永正, 潘红, 张旭, 张春光, 沈泽阳. 考虑应力敏感和复杂运移的页岩气藏压力动态分析[J]. 岩性油气藏, 2019, 31(4): 149-156.
[14] 杜洋, 雷炜, 李莉, 赵哲军, 倪杰. 页岩气井压裂后焖排模式[J]. 岩性油气藏, 2019, 31(3): 145-151.
[15] 王朋飞, 姜振学, 杨彩虹, 金璨, 吕鹏, 王海华. 重庆周缘龙马溪组和牛蹄塘组页岩有机质孔隙发育特征[J]. 岩性油气藏, 2019, 31(3): 27-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .