岩性油气藏 ›› 2021, Vol. 33 ›› Issue (2): 155–162.doi: 10.12108/yxyqc.20210216

• 油气田开发 • 上一篇    下一篇

致密油藏孔喉分布特征对渗吸驱油规律的影响

王付勇1, 杨坤2   

  1. 1. 中国石油大学 (北京) 非常规油气科学技术研究院, 北京 102249;
    2. 中国石化华东油气分公司 临汾煤层气分公司, 山西 临汾 041000
  • 收稿日期:2020-07-20 修回日期:2020-11-26 出版日期:2021-04-01 发布日期:2021-03-31
  • 通讯作者: 杨坤(1994—),男,硕士,从事煤层气开发相关工作。Email:2017210531@cup.edu.cn。 E-mail:2017210531@cup.edu.cn
  • 作者简介:王付勇(1985—),男,博士,副研究员,研究方向为非常规油气藏开发与提高采收率、油气藏动态监测。地址:(102249)北京市昌平区府学路18号中国石油大学(北京)。Email:wangfuyong@cup.edu.cn
  • 基金资助:
    国家自然科学基金“表面活性剂在致密油藏裂缝-微纳米孔隙中的多尺度渗吸驱油机理研究”(编号:51874320)资助

Influence of pore throat size distribution on oil displacement by spontaneous imbibition in tight oil reservoirs

WANG Fuyong1, YANG Kun2   

  1. 1. The Unconventional Oil and Gas Institute, China University of Petroleum (Beijing), Beijing 102249, China;
    2. Linfen Coalbed Methane Company, Sinopec East China Oil & Gas Company, Linfen 041000, Shanxi, China
  • Received:2020-07-20 Revised:2020-11-26 Online:2021-04-01 Published:2021-03-31

摘要: 自发渗吸是致密油藏中一种重要开发机理,构建准确的渗吸驱油数学模型对明确致密油藏渗吸驱油规律具有重要意义。基于毛管束模型,考虑束缚水和残余油饱和度,利用二维高斯分布函数拟合从高压压汞测量得到的致密砂岩孔喉分布,构建岩心尺度致密砂岩基质渗吸驱油数学模型,并通过致密砂岩渗吸实验对数学模型进行验证,开展渗吸规律影响因素分析,明确孔喉分布、润湿角、界面张力等因素对渗吸驱油速率的影响。结果表明,致密砂岩微纳米孔喉分布在半对数图中呈二维高斯分布特征;在自发渗吸初期,渗吸驱油速率主要取决于大孔分布特征,岩心渗透率越高,渗吸驱油速率越大;在自发渗吸中后期,渗吸驱油速率主要受纳米孔喉分布影响;渗吸驱油速率随润湿角降低、油水界面张力增大、原油黏度降低而增大。明确致密储层孔喉分布特征能够准确预测致密油藏渗吸驱油速率,对致密油藏开采制度的确定具有一定的指导作用。

关键词: 致密油藏, 渗吸, 孔喉分布, 数学模型, 二维高斯分布

Abstract: Spontaneous imbibition is an important development mechanism for tight oil reservoirs. It is of great significance to develop a correct mathematical model of spontaneous imbibition to clarify the law of oil production with spontaneous imbibition. Based on the capillary model,considering the distribution of irreducible water and residual oil saturation,using the two-dimensional Gaussian distribution function to fit the pore throat size distribution of tight sandstone obtained from high-pressure mercury intrusion,a core-scale mathematical model for oil displacement with spontaneous imbibition in a tight sandstone matrix was constructed,and verified with imbibition experiment. The influencing factors of imbibition law were analyzed to clarify the effects of pore throat distribution,wetting angle and interfacial tension on the oil production rate by spontaneous imbibition. The results show that the distribution of micro and nano pore throats in tight sandstone has the characteristics of two-dimensional Gaussian distribution in the semi-log plot. In the early stage of spontaneous imbibition,the imbibition rate mainly depends on the distribution of large pores,and the larger the core permeability is,the greater the imbibition and displacement rate is. In the middle and later stage of spontaneous imbibition,the imbibition rate is mainly affected by nanopores. The imbibition rate increases with the decrease of wetting angle,the increase of interfacial tension between oil and water and the decrease of oil viscosity. It can accurately predict the imbibition rate of tight reservoir by defining the pore throat distribution characteristics,which has a certain guiding role in determining the production system of tight reservoirs.

Key words: tight oil reservoir, spontaneous imbibition, pore throat size distribution, mathematical model, twodimensional Gauss distribution

中图分类号: 

  • TE357
[1] 徐立研, 王胡振, 张立韧, 等. 中国致密油研究现状及发展趋势. 当代化工, 2017, 46(1):86-88. XU L Y, WANG H Z, ZHANG L R, et al. Research status and development trend of tight oil in China. Contemporary Chemical Industry, 2017, 46(1):86-88.
[2] 慎迪. 中美致密油勘探开发对比与启示. 云南化工, 2018, 45(3):87. SHEN D. Comparison and enlightenment of tight oil exploration and development between China and America. Yunnan Chemical Technology, 2018, 45(3):87.
[3] 刘淑波. 致密砂岩岩心纳米级孔喉结构分布特征研究. 中国石油大学胜利学院学报, 2018, 32(2):21-23. LIU S B. Research on the distribution characteristics of nanometer pore throat structure in tight sandstone core. Journal of Shengli College China University of Petroleum, 2018, 32(2):21-23.
[4] 杜金虎, 何海清, 杨涛, 等. 中国致密油勘探进展及面临的挑战. 中国石油勘探, 2014(1):1-9. DU J H, HE H Q, YANG T, et al. Progress in China's tight oil exploration and challenges. China Petroleum Exploration, 2014, 19(1):1-9.
[5] 师煜涵. 基于核磁共振研究压裂液在长7储层中的渗吸作用. 西安:西安石油大学, 2018. SHI Y H. Study on fracturing fluid's imbibition of chang-7 source based on nuclear magnetic resonance. Xi'an:Xi'an Shiyou University, 2018.
[6] MIRZAEI-PAIAMAN A, MASIHI M, STANDNES D C. An analytic solution for the frontal flow period in 1d counter-current spontaneous imbibition into fractured porous media including gravity and wettability effects. Transport in Porous Media, 2011, 89(1):49-62.
[7] CAI J, YU B, ZOU M, et al. Fractal characterization of spontaneous co-current imbibition in porous media. Energy & Fuels, 2010, 24(3):1860-1867.
[8] WANG X, SHENG J J. Spontaneous imbibition analysis in shale reservoirs based on pore network modeling. Journal of Petroleum Science and Engineering, 2018, 169:663-672.
[9] 刘秀婵, 陈西泮, 刘伟, 等. 致密砂岩油藏动态渗吸驱油效果影响因素及应用. 岩性油气藏, 2019, 31(5):114-120. LIU X C, CHEN X P, LIU W, et al. Influencing factors of dynamic imbibition displacement effect in tight sandstone reservoir and application. Lithologic Reservoirs, 2019, 31(5):114-120.
[10] 李斌会, 付兰清, 董大鹏, 等. 松辽盆地北部致密砂岩高温高压吞吐渗吸实验. 特种油气藏, 2018, 25(1):1-7. LI B H, FU L Q, DONG D P, et al. High temperature-pressure huff-puff imbibition experiment in the tight sandstone reservoir of northern Songliao Basin. Special Oil and Gas Reservoirs, 2018, 25(1):1-7.
[11] 李洪, 李治平, 王香增, 等. 基于喉道分布特征的致密砂岩渗吸模型. 科学技术与工程, 2018, 18(13):50-54. LI H, LI Z P, WANG X Z, et al. Imbibition model of tight sandstone based on distribution characteristics of roar. Science Technology and Engineering, 2018, 18(13):50-54.
[12] 谷潇雨, 王朝明, 蒲春生, 等. 裂缝性致密油藏水驱动态渗吸特征实验研究:鄂尔多斯盆地富县地区长8储层为例. 西安石油大学学报(自然科学版), 2018, 33(3):37-44. GU X Y, WANG C M, PU C S, et al. Experimental study on dynamic imbibition characteristics of fractured tight sandstone reservoir during water flooding:an example from Chang 8 reservoir of Fuxian area in Ordos Basin. Journal of Xi'an Shiyou University(Natural Science Edition), 2018, 33(3):37-44.
[13] 李爱芬, 何冰清, 雷启鸿, 等. 界面张力对低渗亲水储层自发渗吸的影响. 中国石油大学学报(自然科学版), 2018, 42(4):67-74. LI A F, HE Q B, LEI Q H, et al. Influence of interfacial tension on spontaneous imbibition in low-permeability water-wet reservoirs. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(4):67-74.
[14] XU D, BAI B, WU H, et al. Mechanisms of imbibition enhanced oil recovery in low permeability reservoirs:Effect of IFT reduction and wettability alteration. Fuel, 2019, 244:110-119.
[15] MENG Q, LIU H, WANG J. A critical review on fundamental mechanisms of spontaneous imbibition and the impact of boundary condition, fluid viscosity and wettability. Advances in GeoEnergy Research, 2017, 1(1):1-17.
[16] 濮御, 王秀宇, 濮玲. 静态渗吸对致密油开采效果的影响及其应用. 石油化工高等学校学报, 2016, 29(3):23-27. PU Y, WANG X Y, PU L. Effect of spontaneous imbibition on tight reservoirs. Journal of Petrochemical University, 2016, 29(3):23-27.
[17] 于馥玮, 苏航. 中国致密油特征与开发思路探索. 当代化工, 2015, 44(7):1550-1552. YU F W, SU H. Characteristics and development technique research of tight oil in China. Contemporary Chemical Industry, 2015, 44(7):1550-1552.
[18] 印森林, 陈恭洋, 陈玉琨, 等. 砂砾岩储层孔隙结构模态控制下的剩余油分布-以克拉玛依油田七东1区克下组为例. 岩性油气藏, 2018, 30(5):91-102. YIN S L, CHEN G Y, CHEN Y K, et al. Control effect of pore structure modality on remaining oil in glutenite reservoir:a case from lower Karamay Formation in block Qidong 1 of Karamay Oilfield. Lithologic Reservoirs, 2018, 30(5):91-102.
[19] 张新旺, 郭和坤, 李海波. 基于核磁共振致密油储层渗吸驱油实验研究. 科技通报, 2018, 34(8):35-40. ZHANG X W, GUO H K, LI H B. Experimental study on imbibition oil displacement of tight oil reservoir using NMR technology. Bulletin of Science and Technology, 2018, 34(8):35-40.
[20] 濮御, 王秀宇, 杨胜来. 利用NMRI技术研究致密储层静态渗吸机理. 石油化工高等学校学报, 2017(1):45-48. PU Y, WANG X Y, YANG S L. Research on spontaneous imbibition mechanism of tight oil reservoirs using NMR method. Journal of Petrochemical University, 2017, 30(1):45-48.
[21] 韦青,李治平,王增香, 等. 裂缝性致密砂岩储层渗吸机理及影响:鄂尔多斯盆地吴起地区长8储层为例.油气地质与采收率, 2016, 4(23):102-107. WEI Q, LI Z P, WANG X Z, et al. Mechanism and influence factors of imbibition in fractured tight sandstone reservoir:an example from Chang 8 reservoir of Wuqi area in Ordos Basin. Petroleum Geology and Recovery Efficiency, 20164(23):102-107.
[22] 顾雅頔, 喻高明, 李桂姗. 低渗致密砂岩储层孔隙结构特征及自发渗吸实验. 科学技术与工程, 2019, 19(32):139-145. GU Y D, YU G M,LI G S. Experimental of pore structure and spontaneous imbibition of low permeability tight sandstone reservoirs. Science Technology and Engineering, 2019, 19(32):139-145.
[23] 杨柳, 鲁晓兵, 葛洪魁, 等. 致密储层渗吸特征与孔径分布的关系. 科学技术与工程, 2019, 19(16):106-111. YANG L, LU X B, GE H K, et al. The relationship between imbibition characteristics and pore size distribution. Science Technology and Engineering,2019, 19(16):106-111.
[24] WANG F,ZHAO J. A mathematical model for co-current spontaneous water imbibition into oil-saturated tight sandstone:Upscaling from pore-scale to core-scale with fractal approach. Journal of Petroleum Science and Engineering, 2019, 178:376-388.
[25] 杨胜来. 油层物理学.北京:石油工业出版社, 2004. YANG S L. Reservoir physics. Beijing:Petroleum Industry Press, 2004.
[26] WANG F, YANG K, YOU J, et al. Analysis of pore size distribution and fractal dimension in tight sandstone with mercury intrusion porosimetry. Results in Physics, 2019, 13:102283.
[1] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[2] 曹旭升, 韩昀, 张继卓, 罗志伟. 渗吸效应对裂缝性低渗砾岩油藏开发的影响——以玛湖乌尔禾组储层为例[J]. 岩性油气藏, 2020, 32(4): 155-162.
[3] 刘秀婵, 陈西泮, 刘伟, 王霞. 致密砂岩油藏动态渗吸驱油效果影响因素及应用[J]. 岩性油气藏, 2019, 31(5): 114-120.
[4] 姬靖皓, 席家辉, 曾凤凰, 杨啟桂. 致密油藏分段多簇压裂水平井非稳态产能模型[J]. 岩性油气藏, 2019, 31(4): 157-164.
[5] 杜洋, 雷炜, 李莉, 赵哲军, 倪杰. 页岩气井压裂后焖排模式[J]. 岩性油气藏, 2019, 31(3): 145-151.
[6] 郑 茜, 张小莉, 王国民, 杜江民, 张子介, 钟高润. 扎哈泉地区上干柴沟组致密油烃源岩测井评价方法[J]. 岩性油气藏, 2015, 27(3): 115-121.
[7] 焦立新,刘俊田,李留中,韩 成,张 品,龙 飞. 三塘湖盆地沉凝灰岩致密油藏测井评价技术与应用[J]. 岩性油气藏, 2015, 27(2): 83-91.
[8] 闫 霞,李小军,赵 辉,张 伟,王泽斌,毛得雷. 煤层气井井间干扰研究及应用[J]. 岩性油气藏, 2015, 27(2): 126-132.
[9] 李传亮,李冬梅. 渗吸的动力不是毛管压力[J]. 岩性油气藏, 2011, 23(2): 114-117.
[10] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130-134.
[11] 史英,颜菲,李小波,高泽立,钟杰,谢世淑. 考虑应力敏感疏松砂岩气藏试井分析[J]. 岩性油气藏, 2009, 21(3): 114-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[3] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[4] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[5] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[6] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[7] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[8] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .
[9] 王大兴,于波,张盟勃,宋琛. 地震叠前分析技术在子洲气田的研究与应用[J]. 岩性油气藏, 2008, 20(1): 95 -100 .
[10] 张学涛,王祝文,原镜海. 利用时频分析方法在阵列声波测井中区分油水层[J]. 岩性油气藏, 2008, 20(1): 101 -104 .