岩性油气藏 ›› 2022, Vol. 34 ›› Issue (2): 152–162.doi: 10.12108/yxyqc.20220214

• 地质勘探 • 上一篇    

川东二叠系龙潭组页岩岩相特征与沉积环境

肖威1, 张兵1, 姚永君2, 王艳1, 杨洪宇1, 杨凯1   

  1. 1. 成都理工大学 地球勘探与信息技术教育部重点实验室, 成都 610059;
    2. 中国石油西南油气田分公司 重庆气矿, 重庆 400000
  • 收稿日期:2021-10-08 修回日期:2021-12-20 出版日期:2022-03-01 发布日期:2022-03-14
  • 第一作者:肖威(1997-),男,成都理工大学在读硕士研究生,研究方向为页岩气储层沉积学。地址:(610059)四川省成都市成华区二仙桥街道成都理工大学。Email:3221981677@qq.com
  • 通信作者: 张兵(1981-),男,博士,副教授,主要从事储层沉积学的教学和研究工作。Email:zb4819890@qq.com。
  • 基金资助:
    国家自然科学基金“东特提斯三江构造带深部结构形态与属性特征研究”(编号:91755215)资助

Lithofacies and sedimentary environment of shale of Permian Longtan Formation in eastern Sichuan Basin

XIAO Wei1, ZHANG Bing1, YAO Yongjun2, WANG Yan1, YANG Hongyu1, YANG Kai1   

  1. 1. Key Laboratory of Earth Exploration and Information Technology, Ministry of Education, Chengdu University ofTechnology, Chengdu 610059, China;
    2. Chongqing Gas Mine, PetroChina Southwest Oil & Gas FieldCompany, Chongqing 400000, China
  • Received:2021-10-08 Revised:2021-12-20 Online:2022-03-01 Published:2022-03-14

摘要: 川东地区二叠系龙潭组属于过渡相—海相地层,页岩气勘探前景广阔。根据研究区页岩的矿物学、岩石学特征划分了岩相类型,利用地球化学数据重建了古沉积环境,并探讨了其有机质富集的控制因素,在此基础上建立岩相、有机质富集与沉积环境的耦合关系。研究结果表明:①川东龙潭组页岩主要发育硅质页岩、黏土质硅质混合页岩、黏土质钙质混合页岩和钙质硅质混合页岩等4种岩相,垂向上岩相分布可划分为早期相对富黏土阶段和晚期硅质含量相对较高阶段。②沉积环境分析表明,龙潭组沉积早期海平面低,主要处于氧化—次氧化环境,其U/Th平均为0.42,EFMo平均为6.66,V(/V+Ni)平均为0.77,古生产力较低,陆源输入大,硅质来源为陆源搬运;晚期海平面持续上升,主要处于还原环境,其U/Th平均为5.96,EFMo平均为148.01,V(/V+Ni)平均为0.79,古生产力高,陆源输入低,有大量生物成因硅富集。③龙潭组沉积时期有机质的富集具有明显的差异性,沉积早期受陆源输入强度和古生产力共同控制,大量陆源高等植物碎屑等被带入,造成其有机碳含量较高;沉积晚期仅受古生产力控制,陆源碎屑供给相对前期减弱,有机质多来源于海洋藻类植物。

关键词: 页岩岩相, 陆源碎屑, 古生产力, 有机质富集, 龙潭组, 二叠系, 川东

Abstract: Permian Longtan Formation in eastern Sichuan Basin belongs to transitional-marine strata, with a broad shale gas exploration prospect. According to the mineralogical and petrological characteristics of shale in the study area, the lithofacies was divided, the paleosedimentary environment was reconstructed by using geochemical data, and the controlling factors of organic matter enrichment were discussed. On this basis, the coupling relationship among lithofacies, organic matter enrichment and sedimentary environment was established. The results show that:(1) The shale of Longtan Formation in eastern Sichuan Basin mainly develops four lithofacies:siliceous shale, clay siliceous mixed shale, clay calcareous mixed shale and calcareous siliceous mixed shale. The vertical distribution of lithofacies can be divided into early relatively clay rich stage and late relatively high siliceous content stage.(2) During the early stage of Longtan Formation, the sea level was low, it was mainly in oxidation-suboxidation environment. The average U/Th is 0.42, the average EFMo is 6.66, and the average V(/V+Ni) is 0.77. The paleoproductivity is low and the terrigenous input is large, and the siliceous source was terrigenous transport. During the late stage, the sea level continued to rise, it was mainly in reduction environment. The average U/Th is 5.96, the average EFMo is 148.01, and the average V(/V+Ni) is 0.79, with high paleoproductivity and little terrigenous input, and a large amount of biogenic silicon was enriched.(3) The organic matter enrichment in the sedimentary stage of Longtan Formation have obvious differences, it was jointly affected by terrigenous input and paleoproductivity in the early stage, and a large number of terrigenous higher plant debris were brought in, resulting in a high content of organic carbon. It was controlled by paleoproductivity in the late stage, and the supply of terrigenous debris was weaker than that in the early stage, with organic matter mostly from marine algae.

Key words: shale lithofacies, terrigenous clast, paleoproductivity, organic matter enrichment, Longtan Formation, Permian, eastern Sichuan Basin

中图分类号: 

  • TE122.1
[1] 邹才能, 赵群, 丛连铸, 等.中国页岩气开发进展、潜力及前景[J].天然气工业, 2021, 41(1):1-14. ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14.
[2] 董大忠, 邱振, 张磊夫, 等.海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J].沉积学报, 2021, 39(1):29-45. DONG Dazhong, QIU Zhen, ZHANG Leifu, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1):29-45.
[3] 李建忠.第四次油气资源评价[M].北京:石油工业出版社, 2019:1-385. LI Jianzhong. The fourth oil and gas resource evaluation[M]. Beijing:Petroleum Industry Press, 2019:1-385.
[4] 赵培荣, 高波, 郭战峰, 等.四川盆地上二叠统海陆过渡相和深水陆棚相页岩气的勘探潜力[J].石油实验地质, 2020, 42 (3):335-344. ZHAO Peirong, GAO Bo, GUO Zhanfeng, et al. Exploration potential of marine-continental transitional and deep-water shelf shale gas in Upper Permian, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3):335-344.
[5] 曹清古, 刘光祥, 张长江, 等.四川盆地晚二叠世龙潭期沉积环境及其源控作用分析[J].石油实验地质, 2013, 35(1):36-41. CAO Qinggu, LIU Guangxiang, ZHANG Changjiang, et al. Sedimentary environment and its controlling on source rocks during Late Permian in Sichuan Basin[J]. Petroleum Geology & Experiment, 2013, 35(1):36-41.
[6] 曹涛涛, 邓模, 刘虎, 等.川南-黔北地区龙潭组页岩气成藏条件分析[J].特种油气藏, 2018, 25(3):6-12. CAO Taotao, DENG Mo, LIU Hu, et al. Shale gas accumulation condition analysis of Longtan Formation in southern Sichuan-Northern Guizhou[J]. Special Oil and Gas Reservoirs, 2018, 25 (3):6-12.
[7] 何燚, 唐玄, 单衍胜, 等.四川盆地及其周缘典型地区龙潭组页岩岩相划分对比及特征[J].天然气地球科学, 2021, 32(2):174-190. HE Yi, TANG Xuan, SHAN Yansheng, et al. Lithofacies division and comparison and characteristics of Longtan Formation shale in typical areas of Sichuan Basin and its surrounding[J]. Natural Gas Geoscience, 2021, 32(2):174-190.
[8] 邹玉涛, 段金宝, 赵艳军, 等.川东高陡断褶带构造特征及其演化[J].地质学报, 2015, 89(11):2046-2052. ZOU Yutao, DUAN Jinbao, ZHAO Yanjun, et al. Tectonic characteristics and evolution of the high and steep fault folding belt in east Sichuan[J]. Acta Geologica Sinica, 2015, 89(11):2046-2052.
[9] 田景春, 张奇, 林小兵, 等.四川盆地二叠系层序地层格架内的沉积与储层演化[M].北京:科学出版社, 2018. TIAN Jingchun, ZHANG Qi, LIN Xiaobing, et al. Sediment and reservoir evolution in the sequence stratigraphic framework of Permian in Sichuan Basin[M]. Beijing:Science Press, 2018.
[10] LIN Liangbiao, YU Yu, ZHAI Changbo, et al. Paleogeography and shale development characteristics of the Late Permian Longtan Formation in southeastern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 95:67-81.
[11] 朱逸青, 王兴志, 冯明友, 等.川东地区下古生界五峰组-龙马溪组页岩岩相划分及其与储层关系[J].岩性油气藏, 2016, 28(5):59-66. ZHU Yiqing, WANG Xingzhi, FENG Mingyou, et al. Lithofacies classification and its relationship with reservoir of the Lower Paleozoic Wufeng-Longmaxi Formation in the eastern Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(5):59-66.
[12] 尹兴平, 蒋裕强, 付永红, 等.渝西地区五峰组-龙马溪组龙一1亚段页岩岩相及储层特征[J].岩性油气藏, 2021, 33(4):41-51. YIN Xingping, JIANG Yuqiang, FU Yonghong, et al. Shale lithofacies and reservoir characteristics of Wufeng Formation-lower Long 1 submember of Longmaxi Formation in western Chongqing[J]. Lithologic Reservoirs, 2021, 33(4):41-51.
[13] 吴嘉鹏, 万丽芬, 张兰, 等.西湖凹陷平湖组岩相类型及沉积相分析[J].岩性油气藏, 2017, 29(1):27-34. WU Jiapeng, WAN Lifen, ZHANG Lan, et al. Lithofacies types and sedimentary facies of Pinghu Formation in Xihu Depression[J]. Lithologic Reservoirs, 2017, 29(1):27-34.
[14] 王玉满, 王淑芳, 董大忠, 等.川南下志留统龙马溪组页岩岩相表征[J].地学前缘, 2016, 23(1):119-133. WANG Yuman, WANG Shufang, DONG Dazhong, et al. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 2016, 23 (1):119-133.
[15] 陈科洛, 张廷山, 梁兴, 等.滇黔北坳陷五峰组-龙马溪组下段页岩岩相与沉积环境[J].沉积学报, 2018, 36(4):743-755. CHEN Keluo, ZHANG Tingshan, LIANG Xing, et al. Analysis of shale lithofacies and sedimentary environment on Wufeng Formation-Lower Longmaxi Formation in Dianqianbei Depression[J]. Acta Sedimentologica Sinica, 2018, 36(4):743-755.
[16] ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments:Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21:PA1016.
[17] 常华进, 储雪蕾, 冯连君, 等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J].地质论评, 2009, 55(1):91-99. CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1):91-99.
[18] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies:An update[J]. Chemical Geology, 2006, 232:12-32.
[19] MA Yiquan, FAN Majie, LU Yongchao, et al. Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China:Implications for depositional controls on organic matter accumulation[J]. Marine and Petroleum Geology, 2016, 75:291-309.
[20] RIMMER S M.Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian Basin(USA)[J]. Chemical Geology, 2004, 206:373-391.
[21] DONG Hailiang, HALL C M, HALLIDAY A N, et al. 40Ar/39Ar illite dating of Late Caledonian(Acadian) metamorphism and cooling of K-bentonites and slates from the Welsh Basin, UK[J]. Earth and Planetary Science Letters, 1997, 150:337-351.
[22] 吴蓝宇, 陆永潮, 蒋恕, 等.上扬子区奥陶系五峰组-志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响[J].石油勘探与开发, 2018, 45(5):806-816. WU Lanyu, LU Yongchao, JIANG Shu, et al. Effects of volcanic activities in Ordovician Wufeng-Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2018, 45(5):806-816.
[23] 郑一丁, 雷裕红, 张立强, 等.鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J].天然气地球科学, 2015, 26(7):1395-1404. ZHENG Yiding, LEI Yuhong, ZHANG Liqiang, et al. Characteri stics of element geochemistry and Paleo sedimentary environment evolution of Zhangjiatan shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience, 2015, 26(7):1395-1404.
[24] JIN Zhangdong, LI Fuchun, CAO Junji, et al. Geochemistry of Daihai Lake sediments, Inner Mongolia, north China:Implications for provenance, sedimentary sorting, and catchment weathering[J]. Geomorphology, 2006, 80(3/4):147-163.
[25] 王登, 周豹, 冷双梁, 等.鄂西咸丰地区五峰组-龙马溪组硅质岩地球化学特征及地质意义[J].岩性油气藏, 2022, 34(1):52-62. WANG Deng, ZHOU Bao, LENG Shuangliang, et al. Geochemical characteristics and geological significance of siliceous rocks of Wufeng-Longmaxi Formation in Xianfeng area, western Hubei[J]. Lithologic Reservoirs, 2022, 34(1):52-62.
[26] ROSS D J K, BUSTIN R M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the western Canada sedimentary basin:Application of an integrated formation evaluation[J]. AAPG Bulletin, 2008, 92(1):87-125.
[27] HARRIS N B, MISKIMINS J L, MNICH C A. Mechanical anisotropy in the Woodford shale, Permian Basin:Origin, magnitude, and scale[J]. The Leading Edge, 2011, 30(3):284-291.
[28] 丁江辉, 张金川, 石刚, 等.宣城地区龙潭组页岩沉积环境与有机质富集[J].沉积学报, 2021, 39(2):324-340. DING Jianghui, ZHANG Jinchuan, SHI Gang, et al. Sedimentary environment and organic matter accumulation for the Longtan Formation shale in Xuancheng area[J]. Acta Sedimentologica Sinica, 2021, 39(2):324-340.
[29] RIMMER S M, THOMPSON J A, GOODNIGHT S A, et al. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales:Geochemical and petrographic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 215(1/2):125-154.
[30] 韦恒叶.古海洋生产力与氧化还原指标-元素地球化学综述[J].沉积与特提斯地质, 2012, 32(2):76-88. WEI Hengye. Productivity and redox proxies of palaeo-oceans:An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2):76-88.
[31] 陈亚军, 荆文波, 宋小勇, 等.三塘湖盆地马朗凹陷上石炭统沉积岩层地球化学特征及古环境意义[J].岩性油气藏, 2021, 33(4):63-75. CHEN Yajun, JING Wenbo, SONG Xiaoyong, et al. Geochemical characteristics and paleoenvironmental significance of Upper Carboniferous sedimentary strata in Malang Sag, Santanghu Basin[J]. Lithologic Reservoirs, 2021, 33(4):63-75.
[32] CALVERT S E, PEDERSEN T F. Geochemistry of recent oxic and anoxic marine sediments:Implications for the geological record[J]. Marine Geology, 1993, 113:67-88.
[33] RIBOULLEAU A, BAUDIN F, DECONINCK J F, et al. Depositional conditions and organic matter preservation pathways in an epicontinental environment:The Upper Jurassic Kashpir oil shales(Volga Basin, Russia)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197(3/4):171-197.
[34] LIU Shunxi, WU Caifang, LI Teng, et al. Multiple geochemical proxies controlling the organic matter accumulation of the marinecontinental transitional shale:A case study of the Upper Permian Longtan Formation, western Guizhou, China[J]. Journal of Natural Gas Science and Engineering, 2018, 56:152-165.
[35] 丁江辉, 张金川, 李兴起, 等.黔南坳陷下石炭统台间黑色岩系有机质富集特征及控制因素[J].岩性油气藏, 2019, 31(2):83-95. DING Jianghui, ZHANG Jinchuan, LI Xingqi, et al. Characteristics and controlling factors of organic matter enrichment of Lower Carboniferous black rock series deposited in inter-platform region, southern Guizhou Depression[J]. Lithologic Reservoirs, 2019, 31(2):83-95.
[36] METCALFE I. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:1-33.
[37] ZHANG Fengqi, WU Hongxiang, DILEK Y, et al. Guadalupian (Permian) onset of subduction zone volcanism and geodynamic turnover from passive-to active-margin tectonics in southeast China[J]. GSA Bulletin, 2020, 132(1/2):130-148.
[1] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[2] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[3] 邱玉超, 李亚丁, 文龙, 罗冰, 姚军, 许强, 文华国, 谭秀成. 川东地区寒武系洗象池组构造特征及成藏模式[J]. 岩性油气藏, 2024, 36(5): 122-132.
[4] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[5] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[6] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[7] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[8] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[9] 王同川, 陈浩如, 温龙彬, 钱玉贵, 李玉琢, 文华国. 川东五百梯地区石炭系岩溶古地貌识别及储集意义[J]. 岩性油气藏, 2024, 36(4): 109-121.
[10] 邹连松, 徐文礼, 梁西文, 刘皓天, 周坤, 霍飞, 周林, 文华国. 川东地区下侏罗统自流井组东岳庙段泥页岩沉积特征及物质来源[J]. 岩性油气藏, 2024, 36(4): 122-135.
[11] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[12] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[13] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[14] 包汉勇, 刘皓天, 陈绵琨, 盛贤才, 秦军, 陈洁, 陈凡卓. 川东地区高陡构造带寒武系洗象池群天然气成藏条件[J]. 岩性油气藏, 2024, 36(2): 43-51.
[15] 薄尚尚, 田继先, 李曜良, 王晔桐, 王昊, 孙国强. 川东北地区上三叠统须家河组物源分析[J]. 岩性油气藏, 2024, 36(2): 99-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .