岩性油气藏 ›› 2016, Vol. 28 ›› Issue (1): 106–110.doi: 10.3969/j.issn.1673-8926.2016.01.014

• 技术方法 • 上一篇    下一篇

致密砂岩储层地应力对电阻率测井的影响

陈啸宇1,章成广1,朱 雷2,唐 军1   

  1.  1. 长江大学 油气资源与勘探技术教育部重点实验室,武汉 430100 ; 2. 中国石油塔里木油田分公司 勘探开发研究院,新疆 库尔勒 841000
  • 出版日期:2016-01-20 发布日期:2016-01-20
  • 第一作者:陈啸宇( 1990- ),男,长江大学在读硕士研究生,研究方向为地球物理测井。 地址:( 430100 )湖北省武汉市长江大学地球物理与石油资源学院。 E-mail : 327640653@qq.com
  • 基金资助:

    国家重大科技专项“复杂储层油气测井解释理论方法与处理技术”(编号: 2011ZK05020-008 )资助

Influence of ground stress on resistivity logging response in tight sandstone reservoir

Chen Xiaoyu 1 Zhang Chengguang 1 Zhu Lei 2 Tang Jun 1   

  1.  1. Key Laboratory of Exploration Technologies for Oil and Gas Resources , Ministry of Education , Yangtze University , Wuhan 430100 , China ; 2. Research Institute of Exploration and Development ,PetroChina Tarim Oilfield Company , Korla 841000 , Xinjiang , China
  • Online:2016-01-20 Published:2016-01-20

摘要:

库车坳陷克拉苏构造带储层主要为致密砂岩储层,其埋藏深、地层条件复杂,受岩性、应力挤压等因素的影响,使得利用电阻率曲线识别地层流体性质变得比较困难。 基于测井资料,在着重研究地应力大小、方向对该区地层电阻率测井响应的影响等方面,绘制了地层电阻率与地应力交会图,并根据电成像资料统计该区不同区块地应力方向与裂缝走向。 结果表明:随着水平主应力差的增大,地层电阻率呈指数增大的趋势;当水平最大主应力方向与地层裂缝走向夹角较小时,地层电阻率与水平主应力差的相关性较好;当水平最大主应力方向与地层裂缝走向夹角较大时,地层电阻率与水平主应力差的相关性变差。

关键词: 元素地球化学, 古环境, 含油性, 百口泉组, 玛湖凹陷

Abstract:

Kelasu structural zone in Kuqa Depression belongs to tight sandstone reservoir which is characterized by complex formation conditions and large buried depth. Taking into account the influence of lithology, extrusion stress and other factors, it is difficult to accurately reflect the formation fluid properties by resistivity logging response.Based on studying the influence of magnitude and direction of the ground stress on the resistivity response of reservoir rocks in this area, combined with logging data, the crossplot of formation resistivity and ground stress was plotted, and the statistical data of the direction of horizontal principal stress and the formation fracture orientation in different well fields were sorted by using FMI data. The results show that with the increase of horizontal principal stress difference, the formation resistivity is exponential increasing. The correlation between the formation resistivity and the horizontal principal stress difference is better when the included angle between the direction of horizontal principal stress and the formation fracture orientation is smaller, and the correlation gets worse with the included angle increasing

Key words: geochemistry of element , palaeoenvironment , oiliness , Baikouquan Formation , Mahu Sag

[1] 漆家福,雷刚林,李明刚,等.库车坳陷克拉苏构造带的结构模型及其形成机制[J].大地构造与成矿学,2009,33(1):49-56.

Qi Jiafu,Lei Ganglin,Li Minggang,et al. Analysis of structure model and formation mechanism of Kelasu structure zone,Kuqa depression [J]. Geotectonica et Metallogenia,2009,33(1):49-56.

[2] Brace W F,Orange A S. Electrical resistivity change in saturatedrocks during fracture and frictional sliding[J]. Journal of Geophysical Research,1968,73(4):1433-1445.

[3] 张中天,华正兴,徐明发.1.2 千巴围压下岩样破裂和滑动摩擦过程中电阻率变化[J].地震学报,1985,7(4):428-433.

Zhang Tianzhong,Hua Zhengxing,Xu Mingfa. Electrical resistivity changes in rocks samples during fracture and frictional sliding at 1.2KB confine pressure[J]. Acta Seismologica Sinica,1985,7(4): 428-433.

[4] 陈大元,陈峰,贺国玉.岩石受压过程中“应力反复”对电阻率的影响[J].地震学报,1987,9(3):303-310.

Chen Dayuan,Chen Feng,He Guoyu. Influnces of “stress reversal” on rock resistivity during loading procedure[J]. Acta Seismologica Sinica,1987,9(3):303-310.

[5] 陈峰,安金珍,廖椿庭.弹性约束承载岩石电阻率变化形态研究[J].北京大学学报:自然科学版,2002,38(3):427-430.

Chen Feng,An Jinzhen,Liao Chunting. Research on dependence of resistivity changing feature on axial load under elastic constraint with experiment[J]. Journal of Peking University:Natural Science, 2002,38(3):427-430.

[6] 曲斌,戴跃进,王占国.储层环境岩石电阻率变化规律研究[J]. 大庆石油地质与开发,2001,20(3):28-30.

Qu Bin,Dai Yaojin,Wang Zhanguo. Research of rock resistivity change rule in reservoir environment [J]. Petroleum Geology & Oilfield Development in Daqing,2001,20(3):28-30.

[7] 李军,王贵文,欧阳健.利用测井信息定量研究库车坳陷山前地区地应力[J].石油勘探与开发,2001,28(5):93-95.

Li Jun,Wang Guiwen,Ouyang Jian. Using logging data to quantitatively study terrestrial-stress of Kuqa field [J]. Petroleum Exploration and Development,2001,28(5):93-95.

[8] 李军,张超谟,王贵文,等.前陆盆地山前构造带地应力响应特征及其对储层的影响[J].石油学报,2004,25(3):23-27.

Li Jun,Zhang Chaomo,Wang Guiwen,et al. Terrstrial stress logging responding characteristics of piedmont tectonic belt and its influenceon reservoir property[J]. Acta Seismologica Sinica,2004,25(3): 23-27.

[9] 缪定云.吐哈盆地山前构造带构造地应力测井响应特征及其对储集层物性的影响[J].石油天然气学报,2005,27(1):53-55.

Miao Dingyun. Characteristics of in situ stress logging response of foothill structural belt in Tuha Basin and its influence on reservoir physical properties[J]. Journal of Oil and Gas Technology,2005, 27(1):53-55.

[10] 李传亮,涂兴万.储层岩石的 2 种应力敏感机制———应力敏感有利于驱油[J].岩性油气藏,2008,20(1):111-113.

Li Chuanliang,Tu Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs,2008,20(1):111-113.

[11] 赵军,王淼,祁兴中,等.轮西地区奥陶系地应力方向及裂缝展布规律分析[J].岩性油气藏,2010,22(3):95-99.

Zhao Jun,Wang Miao,Qi Xingzhong,et al. Ground stress direction and fracture distribution law of Ordovician in Lunxi area [J].Lithologic Reservoirs,2010,22(3):95-99.

[12] 王志萍,秦启荣,苏培东,等.LZ 地区致密砂岩储层裂缝综合预测方法及应用[J].岩性油气藏,2011,23(3):97-101.

Wang Zhiping,Qin Qirong,Su Peidong,et al. Prediction method of fracture in tight sandstone reservoir and its application in L Z area [J]. Lithologic Reservoirs,2011,23(3):97-101.

[13] 梁晓伟,韩永林,王海红,等.鄂尔多斯盆地姬源塬区上三叠统延长组裂缝特征及其地质意义[J].岩性油气藏,2009,21(2):49-53.

Liang Xiaowei,Han Yonglin,Wang Haihong,et al. Fracture characteristics and geological significance of Upper Triassic Yanchang Formation in Jiyuan area,Ordos Basin[J]. Lithologic Reservoirs, 2009,21(2):49-53.

[14] 刘伟刚,周立发,高淑静. 鄂尔多斯盆地中西部三叠系延长组裂缝特征研究[J].岩性油气藏,2012,24(3):66-71.

Liu Weigang,Zhou Lifa,Gao Shujing. Fracture characteristics of the Triassic Yanchang Formation in the midwest of Ordos Basin[J].Lithologic Reservoirs,2012,24(3):66-71.

[15] 张辉,肖承文,海川.利用声电成像评价碳酸盐岩储集层裂缝[J].新疆石油地质,2009,30(2):252-254.

Zhang Hui,Xiao Chengwen,Hai Chuan. Application of acousticelectric imaging data to evaluation of fractures in carbonate reservoir [J]. Xinjiang Petroleum Geology,2009,30(2):252-254.

[16] 姜文龙,刘英.岩石在单轴压力环境下电阻率变化的研究[J].地质学刊,2009,33(3):299-302.

Jiang Wenlong,Liu Ying. Study on variation of electrical resistivity under uniaxial pressure environment for rocks[J]. Journal of Geology, 2009,33(3):299-302.

[17] 郝锦绮,冯锐,周建国,等.岩石破裂过程中电阻率变化机理的探讨[J].地球物理学报,2002,45(3):426-435.

Hao Jinqi,Feng Rui,Zhou Jianguo,et al. Study on the mechanism of resistivity changes during rock cracking[J]. Chinese Journal of Geophysics,2002,45(3):426-435.

[1] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[2] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[3] 宋志华, 李垒, 雷德文, 张鑫, 凌勋. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏, 2024, 36(3): 40-49.
[4] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[5] 尹路, 许多年, 乐幸福, 齐雯, 张继娟. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J]. 岩性油气藏, 2024, 36(1): 59-68.
[6] 覃建华, 王建国, 李思远, 李胜, 窦智, 彭仕宓. 玛湖凹陷三叠系百口泉组致密砾岩储层水力裂缝特征及形成机制[J]. 岩性油气藏, 2023, 35(4): 29-36.
[7] 吕正祥, 廖哲渊, 李岳峰, 宋修章, 李响, 何文军, 黄立良, 卿元华. 玛湖凹陷二叠系风城组碱湖云质岩储层成岩作用[J]. 岩性油气藏, 2022, 34(5): 26-37.
[8] 彭妙, 张磊, 陶金雨, 赵康, 张祥辉, 张昌民. 玛湖凹陷三叠系百口泉组砂砾岩中砾石磨圆度定量表征[J]. 岩性油气藏, 2022, 34(5): 121-129.
[9] 杨帆, 卞保力, 刘慧颖, 姚宗全, 尤新才, 刘海磊, 卫延召. 玛湖凹陷二叠系夏子街组限制性湖盆扇三角洲沉积特征[J]. 岩性油气藏, 2022, 34(5): 63-72.
[10] 罗锦昌, 田继军, 马静辉, 闫嘉启, 梁雅菲, 胡卓浩. 吉木萨尔凹陷吉页1井区二叠系芦草沟组沉积环境及有机质富集机理[J]. 岩性油气藏, 2022, 34(5): 73-85.
[11] 白雨, 汪飞, 牛志杰, 金开来, 李沛毅, 许多年, 陈刚强. 准噶尔盆地玛湖凹陷二叠系风城组烃源岩生烃动力学特征[J]. 岩性油气藏, 2022, 34(4): 116-127.
[12] 雷海艳, 郭佩, 孟颖, 齐婧, 刘金, 张娟, 刘淼, 郑雨. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价[J]. 岩性油气藏, 2022, 34(3): 142-153.
[13] 熊加贝, 何登发. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素[J]. 岩性油气藏, 2022, 34(1): 187-200.
[14] 陈永波, 张虎权, 张寒, 曾华会, 王斌, 王洪求, 许多年, 马永平, 宗兆云. 基于OVT域偏移数据的云质岩储层预测技术及应用——以玛湖凹陷乌夏地区风三段为例[J]. 岩性油气藏, 2021, 33(6): 145-155.
[15] 马博, 吉利明, 张明震, 金培红, 苑伯超, 龙礼文. 酒西盆地红柳峡地区下白垩统烃源岩孢粉相与沉积古环境特征[J]. 岩性油气藏, 2021, 33(5): 22-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 耿燕飞,张春生,韩校锋,杨大超. 安岳—合川地区低阻气层形成机理研究[J]. 岩性油气藏, 2011, 23(3): 70 -74 .