岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 131–137.doi: 10.12108/yxyqc.20180616

• 石油工程 • 上一篇    下一篇

双重介质低渗油藏斜井压力动态特征分析

姜瑞忠, 沈泽阳, 崔永正, 张福蕾, 张春光, 原建伟   

  1. 中国石油大学(华东) 石油工程学院, 山东 青岛 266580
  • 收稿日期:2018-03-30 修回日期:2018-05-23 出版日期:2018-11-16 发布日期:2018-11-16
  • 第一作者:姜瑞忠(1964-),男,博士,教授,博士生导师,主要从事油气田开发方面的教学和科研工作。地址:(266580)山东省青岛市黄岛区长江西路66号中国石油大学(华东)。Email:jrzhong@126.com。
  • 基金资助:
    国家自然科学基金项目“致密储层体积压裂缝网扩展模拟研究”(编号:51574265)、国家重大科技专项“厚层非均质性气藏产能评价及预测技术”(编号:2016ZX05027-004-004)和“低渗、特低渗油藏水驱扩大波及体积方法与关键技术”(编号:2017ZX05013-002)联合资助

Dynamical characteristics of inclined well in dual medium low permeability reservoir

JIANG Ruizhong, SHEN Zeyang, CUI Yongzheng, ZHANG Fulei, ZHANG Chunguang, YUAN Jianwei   

  1. Faculty of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China
  • Received:2018-03-30 Revised:2018-05-23 Online:2018-11-16 Published:2018-11-16

摘要: 斜井在油藏开发中的应用日趋普遍,然而当前对斜井试井的研究仍然比较少。考虑到低渗油藏存在的压敏效应和启动压力梯度现象,引入渗透率模量与启动压力梯度来建立双重介质低渗油藏的斜井数学模型,利用格林函数和汇源叠加求得了该模型的井底压力响应,并绘制了斜井试井曲线。结果表明:该试井曲线可以划分为6个流动段:纯井筒储集段、过渡流段、井斜角控制段、裂缝径向流段、窜流段与晚期径向流段。此外,当模型考虑启动压力梯度或应力敏感时会导致压力与压力导数曲线晚期均大幅上移,并且启动压力梯度引起的上移幅度相对较大。同时考虑这2种因素时,它们的作用相互叠加,曲线上移幅度更大。另外,当井斜角大于30°时,压力导数曲线与水平井压力导数曲线相似,出现垂直径向流段,反之则与直井相似。该模型求出了相应的解析解,参数解释结果更加精确,可为斜井开发低渗油藏提供理论指导。

关键词: 双重介质, 低渗油藏, 启动压力梯度, 应力敏感性, 斜井试井

Abstract: Inclined wells have been widely used in the development of reservoirs, but the well test interpretation techniques in inclined wells are currently less studied. At the same time, considering the phenomenon of stresssensitivity effect and threshold pressure gradient in low permeability reservoirs, we introduced permeability modulus and threshold pressure gradient to establish a mathematical model of inclined well in dual-medium low-permeability reservoir. By using sink source superposition and Green function, the bottom hole pressure response of this model was obtained and the plots of inclined well test curves were drawn. The results show that:the well test curve can be divided into six flow sections:wellbore storage section, transition flow section, well inclination control section, crack radial flow section, cross flow section and late radial flow section. In addition, the effect of threshold pressure gradient or stress-sensitivity effect led to a sharp upturn in the later stages of the pressure and the derivative curve, and the upturns caused by the effect of threshold pressure gradient was relatively larger. Otherwise, considering these two factors at the same time, their effects overlapped each other, so the upturn was obvious. When the deviation angle was greater than 30°, the pressure derivative curve characteristics were similar to that of horizontal wells and there was a vertical radial flow section, otherwise it was similar to that of vertical wells. The analytical solution was obtained by this model, and the parameter interpretation result was more accurate. Therefore, it can provide a theoretical guidance for developing low permeability reservoirs with inclined wells.

Key words: dual medium, low permeability reservoir, threshold pressure gradient, stress-sensitivity effect, inclined well test

中图分类号: 

  • TE348
[1] 田敏. 胜利油田新增探明储量SEC评估现状与分析. 岩性油气藏, 2017, 29(1):97-103. TIAN M. The status and analysis of SEC evaluation results for new-added proved reserves in Shengli Oilfield. Lithologic Reservoirs, 2017, 29(1):97-103.
[2] 张海勇, 何顺利, 栾国华, 等. 微裂缝超低渗储层的应力敏感实验研究. 西安石油大学学报(自然科学版), 2015, 30(1):30-33. ZHANG H Y, HE S L, LUAN G H, et al. Experimental study on stress sensitivity of microfracture ultra-low permeability reservoirs. Journal of Xi'an Shiyou University(Natural Science Edition), 2015, 30(1):30-33.
[3] 李善鹏, 吴凯, 方艳兵. 特低渗透油藏启动压力现象研究——以侯市地区为例. 岩性油气藏, 2009, 21(1):125-127. LI S P, WU K, FANG Y B. Study on the starting pressure phenomenon in ultra-low permeability reservoir:an example from Houshi area. Lithologic Reservoirs, 2009, 21(1):125-127.
[4] ZENG B, CHENG L, LI C. Low velocity non-linear flow in ultra-low permeability reservoir. Journal of Petroleum Science & Engineering, 2011, 80(1):1-6.
[5] 邓学峰. 致密低渗油藏压裂水平井合理生产压差优化设计. 岩性油气藏, 2017, 29(1):135-139. DENG X F. Optimization of reasonable production pressure difference of fractured horizontal well in low permeability tight reservoirs. Lithologic Reservoirs, 2017, 29(1):135-139.
[6] 赵习森, 党海龙, 庞振宇, 等. 特低渗储层不同孔隙组合类型的微观孔隙结构及渗流特征——以甘谷驿油田唐157井区长6储层为例. 岩性油气藏, 2017, 29(6):8-14. ZHAO X S, DANG H L, PANG Z Y, et al. Microscopic pore structure and seepage characteristics of different pore assemblage types in ultra low permeability reservoir:a case of Chang 6 reservoir in Tang 157 well area, Ganguyi Oilfield. Lithologic Reservoirs, 2017, 29(6):8-14.
[7] 陈引弟. 渗透率应力敏感油藏试井解释模型研究. 成都:西南石油大学, 2017. CHEN Y D. Study of well test interpretation model in stresssensitive reservoir. Chengdu:Southwest Petroleum University, 2017.
[8] 郝斐, 程林松, 李春兰, 等. 考虑启动压力梯度的低渗透油藏不稳定渗流模型. 石油钻采工艺, 2006, 28(5):58-60. HAO F, CHEN L S, LI C L, et al. An unsteady flow model for low permeability reservoirs considering threshold pressure gradient. Oil Drilling & Production Technology, 2006, 28(5):58-60.
[9] 张旭. 斜井试井分析理论及其特征研究. 成都:西南石油大学, 2012. ZHANG X. Wellbore well test analysis theory and its characteristics. Chengdu:Southwest Petroleum University, 2012.
[10] CINCO L H. Unsteady-state pressure distribution created by a directionally drilled well or a well with an inclined fracture. Stanford, Calif:Standford University, 1974.
[11] ABBASZADEH M, HEGEMAN P S. Pressure-transient analysis for a slanted well in a reservoir with vertical pressure support. SPE Formation Evaluation, 1990, 5(3):277-284.
[12] 廖新维. 双重介质拟稳态油藏斜井试井模型研究. 石油勘探与开发, 1998, 25(5):57-61. LIAO X W. Discussion of slanted well test model in dual porosity reservoirs with pseudo steady state flow. Petroleum Exploration and Development, 1998, 25(5):57-61.
[13] 任俊杰, 郭平, 汪周华. 三重介质油藏斜井压力动态特征分析. 水动力学研究与进展, 2012, 27(1):7-15. REN J J, GUO P, WANG Z H. Dynamical characteristic analysis of inclined well in triple medium reservoir. Chinese Journal of Hydrodynamics, 2012, 27(1):7-15.
[14] 周兴燕, 章友洪. 斜井试井研究新方法. 重庆科技学院学报(自然科学版), 2013, 15(6):42-44. ZHOU X Y, ZHANG Y H. Research of deviated well and testing well. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2013, 15(6):42-44.
[15] RAGHAVAN R, SCORER J D T, MILLER F G. An investigation by numerical methods of the effect of pressure dependent rock and fluid properties on well flow tests. Society of Petroleum Engineers Journal, 1972, 12(3):267-275.
[16] SAMANIEGO F, CINCO L H. On the determination of the pressure dependent characteristics of a reservoir through transient pressure testing. Society of Petroleum Engineers, 1989:285-287.
[17] 邢承林. 具有启动压力梯度的不稳定渗流理论研究. 成都:西华大学, 2010. XING C L. Theoretical research of unsteady flow in porous media related start-up pressure gradients. Chengdu:Xihua University,2010.
[18] 刘永良, 徐艳梅, 刘彬, 等. 考虑启动压力梯度低渗双重介质油藏垂直裂缝井试井模型. 油气井测试, 2010, 19(5):5-8. LIU Y L, XU Y M, LIU B, et al. Well test model of vertical fractured wells in double porosity reservoir with low permeability with consideration of startup pressure gradient. Well Testing, 2010, 19(5):5-8.
[19] ZHANG Y, WANG Z S, YAO J, et al. Study and application of pressure transient of naturally fractured reservoirs with stresssensitive and start pressure grade. Journal of Hydrodynamics, 2007, 22(3):332-337.
[20] 杨志兴, 杨明, 刘海成, 等. 低渗变形介质油藏斜井试井及现场应用.科学技术与工程, 2014, 14(21):81-88. YANG Z X, YANG M, LIU H C, et al. Well deviated well testing and field application in low permeability deformation medium reservoir. Science Technology and Engineering, 2014, 14(21):81-88.
[21] CINCO L H, MILLER F G. Unsteady-state pressure distribution created by a directionally drilled well. Journal of Petroleum Technology, 1975(11):1392-1400.
[1] 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188.
[2] 钟会影, 余承挚, 沈文霞, 毕永斌, 伊然, 倪浩铭. 考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征[J]. 岩性油气藏, 2024, 36(3): 172-179.
[3] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[4] 刘晨, 王凯, 王业飞, 周文胜. 针对A油田的抗温、抗盐聚合物/表面活性剂二元复合驱油体系研究[J]. 岩性油气藏, 2017, 29(3): 152-158.
[5] 李传亮, 朱苏阳, 彭朝阳, 王凤兰, 杜庆龙, 由春梅. 煤层气井突然产气机理分析[J]. 岩性油气藏, 2017, 29(2): 145-149.
[6] 邓学峰. 致密低渗油藏压裂水平井合理生产压差优化设计[J]. 岩性油气藏, 2017, 29(1): 135-139.
[7] 王新杰,唐海,佘龙,邹佳丽,周巨标,李祥珠. 低渗透油藏水平井裂缝参数优化研究[J]. 岩性油气藏, 2014, 26(5): 129-132.
[8] 王庆如,李敬功. 碳酸盐岩气藏储量参数测井评价方法[J]. 岩性油气藏, 2013, 25(6): 98-102.
[9] 董凤玲,周华东,李志萱,陈莹莹,毕玉帅,王磊. 卫42 断块特低渗油藏挖潜调整研究[J]. 岩性油气藏, 2013, 25(5): 113-116.
[10] 李传亮,朱苏阳. 再谈启动压力梯度[J]. 岩性油气藏, 2013, 25(4): 1-5.
[11] 李标,唐海,吕栋梁. 正方形反九点井网压力梯度及水驱储量动用程度研究[J]. 岩性油气藏, 2013, 25(2): 95-99.
[12] 孙恩慧,李晓平,王伟东. 低渗透气藏气水两相流井产能分析方法研究[J]. 岩性油气藏, 2012, 24(6): 121-124.
[13] 王晓琴,吴聚,冉艳,贾莎,张楠. 非线性渗流对异常高压气藏产能的影响[J]. 岩性油气藏, 2012, 24(4): 125-128.
[14] 易超,丁晓琪,葛鹏莉,郭佳. 利用测井资料对镇泾油田长8 油藏进行产能预测[J]. 岩性油气藏, 2010, 22(4): 104-108.
[15] 李传亮. 动边界其实并不存在[J]. 岩性油气藏, 2010, 22(3): 121-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .